5 research outputs found

    Electronic States and Light Absorption in a Cylindrical Quantum Dot Having Thin Falciform Cross Section

    Get PDF
    Energy level structure and direct light absorption in a cylindrical quantum dot (CQD), having thin falciform cross section, are studied within the framework of the adiabatic approximation. An analytical expression for the energy spectrum of the particle is obtained. For the one-dimensional “fast” subsystem, an oscillatory dependence of the wave function amplitude on the cross section parameters is revealed. For treatment of the “slow” subsystem, parabolic and modified Pöschl-Teller effective potentials are used. It is shown that the low-energy levels of the spectrum are equidistant. In the strong quantization regime, the absorption coefficient and edge frequencies are calculated. Selection rules for the corresponding quantum transitions are obtained

    Electron States and Light Absorption in Strongly Oblate and Strongly Prolate Ellipsoidal Quantum Dots in Presence of Electrical and Magnetic Fields

    Get PDF
    In framework of the adiabatic approximation the energy states of electron as well as direct light absorption are investigated in strongly oblate and strongly prolate ellipsoidal quantum dots (QDs) at presence of electric and magnetic fields. Analytical expressions for particle energy spectrum are obtained. The dependence of energy levels’ configuration on QD geometrical parameters and field intensities is analytically obtained. The energy levels of electrons are shown to be equidistant both for strongly oblate and prolate QDs. The effect of the external fields on direct light absorption of a QD was investigated. The dependence of the absorption edge on geometrical parameters of QDs and intensities of the electric and magnetic fields is obtained. Selection rules are obtained at presence as well as absence of external electric and magnetic fields. In particular, it is shown that the presence of the electric field cancels the quantum numbers selection rules at the field direction, whereas in radial direction the selection rules are preserved. Perspectives of practical applications for device manufacturing based on ellipsoidal quantum dots are outlined
    corecore