4 research outputs found

    Transmission of mushroom virus X and the impact of virus infection on the transcriptomes and proteomes of different strains of Agaricus bisporus

    Get PDF
    Cultivation of Agaricus bisporus is a large horticultural industry for many countries worldwide, where a single variety is almost grown exclusively. Mushroom virus X (MVX), a complex of multiple positive-sense single stranded RNA (ss(+)RNA) viruses, is a major pathogen of typical A. bisporus crops. MVX can manifest a variety of symptoms in crops and is highly infective and difficult to eradicate once established in host mycelium. Currently our knowledge regarding the molecular response of A. bisporus fruit bodies to MVX infection is limited. In order to study the response of different A. bisporus strains with different susceptibilities to MVX, we designed a model system to evaluate the in-vitro transmission of viruses in A. bisporus hyphae over a time-course, at two crucial phases in the crop cycle. The symptom expression of MVX in these varieties and the transcriptomic and proteomic response of fruit bodies to MVX-infection were examined. Transmission studies revealed the high potential of MVX to spread to uninfected mycelium yet not into the fruit bodies of certain strains in a crop. MVX affected colour and quality of multiple fruit bodies. Gene expression is significantly altered in all strains and between times of inoculation in the crop. Genes related to stress responses displayed differential expression. Proteomic responses revealed restriction of cellular signalling and vesicle transport in infected fruit bodies. This in-depth analysis examining many factors relevant to MVX infection in different A. bisporus strains, will provide key insights into host responses for this commercially important food crop

    Proteomic investigation of interhyphal interactions between strains of Agaricus bisporus

    Get PDF
    peer-reviewedHyphae of filamentous fungi undergo polar extension, bifurcation and hyphal fusion to form reticulating networks of mycelia. Hyphal fusion or anastomosis, a ubiquitous process among filamentous fungi, is a vital strategy for how fungi expand over their substrate and interact with or recognise self- and non-self hyphae of neighbouring mycelia in their environment. Morphological and genetic characterisation of anastomosis has been studied in many model fungal species, but little is known of the direct proteomic response of two interacting fungal isolates. Agaricus bisporus, the most widely cultivated edible mushroom crop worldwide, was used as an in vitro model to profile the proteomes of interacting cultures. The globally cultivated strain (A15) was paired with two distinct strains; a commercial hybrid strain and a wild isolate strain. Each co-culture presented a different interaction ranging from complete vegetative compatibility (self), lack of interactions, and antagonistic interactions. These incompatible strains are the focus of research into disease-resistance in commercial crops as the spread of intracellular pathogens, namely mycoviruses, is limited by the lack of interhyphal anastomosis. Unique proteomic responses were detected between all co-cultures. An array of cell wall modifying enzymes, plus fungal growth and morphogenesis proteins were found in significantly (P < 0.05) altered abundances. Nitrogen metabolism dominated in the intracellular proteome, with evidence of nitrogen starvation between competing, non-compatible cultures. Changes in key enzymes of A. bisporus morphogenesis were observed, particularly via increased abundance of glucanosyltransferase in competing interactions and certain chitinases in vegetative compatible interactions only. Carbohydrate-active enzyme arsenals are expanded in antagonistic interactions in A. bisporus. Pathways involved in carbohydrate metabolism and genetic information processing were higher in interacting cultures, most notably during self-recognition. New insights into the differential response of interacting strains of A. bisporus will enhance our understanding of potential barriers to viral transmission through vegetative incompatibility. Our results suggest that a differential proteomic response occurs between A. bisporus at strain-level and findings from this work may guide future proteomic investigation of fungal anastomosis.Teagas

    Transmission of mushroom virus X and the impact of virus infection on the transcriptomes and proteomes of different strains of Agaricus bisporus

    Get PDF
    peer-reviewedCultivation of Agaricus bisporus is a large horticultural industry for many countries worldwide, where a single variety is almost grown exclusively. Mushroom virus X (MVX), a complex of multiple positive-sense single stranded RNA (ss(+)RNA) viruses, is a major pathogen of typical A. bisporus crops. MVX can manifest a variety of symptoms in crops and is highly infective and difficult to eradicate once established in host mycelium. Currently our knowledge regarding the molecular response of A. bisporus fruit bodies to MVX infection is limited. In order to study the response of different A. bisporus strains with different susceptibilities to MVX, we designed a model system to evaluate the in-vitro transmission of viruses in A. bisporus hyphae over a time-course, at two crucial phases in the crop cycle. The symptom expression of MVX in these varieties and the transcriptomic and proteomic response of fruit bodies to MVX-infection were examined. Transmission studies revealed the high potential of MVX to spread to uninfected mycelium yet not into the fruit bodies of certain strains in a crop. MVX affected colour and quality of multiple fruit bodies. Gene expression is significantly altered in all strains and between times of inoculation in the crop. Genes related to stress responses displayed differential expression. Proteomic responses revealed restriction of cellular signalling and vesicle transport in infected fruit bodies. This in-depth analysis examining many factors relevant to MVX infection in different A. bisporus strains, will provide key insights into host responses for this commercially important food crop
    corecore