100 research outputs found

    Infiltration Measurements for Soil Hydraulic Characterization

    Get PDF
    This book summarises the main results of many contributions from researchers worldwide who have used the water infiltration process to characterize soil in the field. Determining soil hydrodynamic properties is essential to interpret and simulate the hydrological processes of economic and environmental interest. This book can be used as a guide to soil hydraulic characterization and in addition it gives a complete description of the treated techniques, including an outline of the most significant research results, with the main points that still needing development and improvement

    Analysis of antenal sensilla patterns of Rhodnius prolixus from Colombia and Venezuela

    Get PDF
    Antennal sensilla patterns were used to analyze population variation of domestic Rhodnius prolixus from six departments and states representing three biogeographical regions of Colombia and Venezuela. Discriminant analysis of the patterns of mechanoreceptors and of three types of chemoreceptors on the pedicel and flagellar segments showed clear differentiation between R. prolixus populations east and west of the Andean Cordillera. The distribution of thick and thin-walled trichoids on the second flagellar segment also showed correlation with latitude, but this was not seen in the patterns of other sensilla. The results of the sensilla patterns appear to be reflecting biogeographic features or population isolation rather than characters associated with different habitats and lend support to the idea that domestic R. prolixus originated in the eastern region of the Andes.Fil: Esteban, Lyda. Universidad Industrial de Santander; ColombiaFil: Angulo, Víctor Manuel. Universidad Industrial de Santander; ColombiaFil: Dora Feliciangeli, M.. Universidad de Carabobo; VenezuelaFil: Catala, Silvia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; Argentin

    Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration

    Get PDF
    In Mediterranean ecosystems, special attention needs to be paid to forest-water relationships due to water scarcity. In this context, Adaptive Forest Management (AFM) has the objective to establish how forest resources have to be managed with regards to the efficient use of water, which needs maintaining healthy soil properties even after disturbance. The main objective of this investigation was to understand the effect of one of the AFM methods, namely forest thinning, on soil hydraulic properties. At this aim, soil hydraulic characterization was performed on two contiguous Mediterranean oak forest plots, one of them thinned to reduce the forest density from 861 to 414 tree per ha. Three years after the intervention, thinning had not affected soil water permeability of the studied plots. Both ponding and tension infiltration runs yielded not significantly different saturated, Ks, and unsaturated, K-20, hydraulic conductivity values at the thinned and control plots. Therefore, thinning had no an adverse effect on vertical water fluxes at the soil surface. Mean Ks values estimated with the ponded ring infiltrometer were two orders of magnitude higher than K-20 values estimated with the minidisk infiltrometer, revealing probably soil structure with macropores and fractures . The input of hydrophobic organic matter, as a consequence of the addition of plant residues after the thinning treatment, resulted in slight differences in terms of both water drop penetration time, WDPT, and the index of water repellency, R, between thinned and control plots. Soil water repellency only affected unsaturated soil hydraulic conductivity measurements. Moreover, K-20 values showed a negative correlation with both WDPT and R, whereas Ks values did not, revealing that the soil hydrophobic behavior has no impact on saturated hydraulic conductivity

    Mixed formulation for an easy and robust numerical computation of sorptivity

    Get PDF
    Sorptivity is one of the most important parameters for the quantification of water infiltration into soils. proposed a specific formulation to derive sorptivity as a function of the soil water retention and hydraulic conductivity functions, as well as initial and final soil water contents. However, this formulation requires the integration of a function involving hydraulic diffusivity, which may be undefined or present numerical difficulties that cause numerical misestimations. In this study, we propose a mixed formulation that scales sorptivity and splits the integrals into two parts: the first term involves the scaled degree of saturation, while the second involves the scaled water pressure head. The new mixed formulation is shown to be robust and well-suited to any type of hydraulic function - even with infinite hydraulic diffusivity or positive air-entry water pressure heads - and any boundary condition, including infinite initial water pressure head, h→-∞. Lastly, we show the benefits of using the proposed formulation for modeling water into soil with analytical models that use sorptivity. Copyright

    A scaling procedure for straightforward computation of sorptivity

    Get PDF
    This research has been supported by the Agence Nationale de la Recherche (grant no. ANR-17-CE04-010).Sorptivity is a parameter of primary importance in the study of unsaturated flow in soils. This hydraulic parameter is required to model water infiltration into vertical soil profiles. Sorptivity can be directly estimated from the soil hydraulic functions (water retention and hydraulic conductivity curves), using the integral formulation of Parlange (1975). However, calculating sorptivity in this manner requires the prior determination of the soil hydraulic diffusivity and its numerical integration between initial and final saturation degrees, which may be difficult in some situations (e.g., coarse soil with diffusivity functions that are quasi-infinite close to saturation). In this paper, we present a procedure to compute sorptivity using a scaling parameter, cp, that corresponds to the sorptivity of a unit soil (i.e., unit values for all parameters and zero residual water content) that is utterly dry at the initial state and saturated at the final state. The cp parameter was computed numerically and analytically for five hydraulic models: delta (i.e., Green and Ampt), Brooks and Corey, van Genuchten–Mualem, van Genuchten–Burdine, and Kosugi. Based on the results, we proposed brand new analytical expressions for some of the models and validated previous formulations for the other models. We also tabulated the output values so that they can easily be used to determine the actual sorptivity value for any case. At the same time, our numerical results showed that the relation between cp and the hydraulic shape parameters strongly depends on the chosen model. These results highlight the need for careful selection of the proper model for the description of the water retention and hydraulic conductivity functions when estimating sorptivity.French National Research Agency (ANR) European Commission ANR-17-CE04-01

    Soil measurements during HAPEX-Sahel intensive observation period

    Get PDF
    This article describes measurements made at each site and for each vegetation cover as part of the soils program for the HAPEX-Sahel regional scale experiment. The measurements were based on an initial sampling scheme and included profile soil water content, surface soil water content, soil water potential, infiltration rates, additional measurements on core samples, and grain size analysis. The measurements were used to categorize the state of the surface and profile soil water regimes during the experiment and to derive functional relationships for the soil water characteristic curve, unsaturated hydraulic conductivity function, and infiltration function. Sample results for different supersites and different vegetation covers are presented showing soil water profiles and total soil water storage on days corresponding to the experimental ‘Golden Days’. Sample results are also presented for spatial and temporal distribution of surface moisture content and infiltration tests. The results demonstrate that the major experimental objective of monitoring the supersites during the most rapid vegetative growth stage with the largest change of the surface energy balance following the rainy season was very nearly achieved. Separation of the effects of probable root activity and drainage of the soil profile is possible. The potential for localized advection between the bare soil and vegetation strips of the tiger bush sites is demonstrate

    Interweaving Monitoring Activities and Model Development towards Enhancing Knowledge of the Soil-Plant-Atmosphere Continuum

    Full text link
    The study of water pathways from the soil to the atmosphere through plants-the so-called soil-plant-atmosphere continuum (SPAC)-has always been central to agronomy, hydrology, plant physiology, and other disciplines, using a wide range of approaches and tools. In recent years, we have been witnessing a rapid expansion of interweaving monitoring activities and model development related to SPAC in climatic, ecological, and applications other than the traditional agrohydrological, and it is therefore timely to review the current status of this topic and outline future directions of research. The initiative for the special section of Vadose Zone Journal on SPAC emanated from several sessions we recently organized in international conferences and meetings. With a view to the specific research questions covered in this special section, this article introduces and reviews SPAC underlying issues and then provides a brief overview of the invited contributions. We have grouped together the 15 contributions under three main sections related to the local, field, and landscape spatial scales of interests. Within these sections, the papers present their innovative results using different measuring techniques (from classic tensiometers and TDR sensors to more advanced and sophisticated equipment based on tomography and geophysics) and different modeling tools (from mechanistic models based on the Richards equation to more parametrically parsimonious hydrologic balance models). They provide a snapshot of the current state of the art while emphasizing the significant progress attained in this field of research. New technological developments and applications are also highlighted

    Development and analysis of the Soil Water Infiltration Global database.

    Get PDF
    In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76% of the experimental sites with agricultural land use as the dominant type (~40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it
    corecore