80 research outputs found
Configuration Complexities of Hydrogenic Atoms
The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or
shape complexity (i.e., the disequilibrium times the Shannon entropic power) of
hydrogenic stationary states are investigated in both position and momentum
spaces. First, it is shown that not only the Fisher information and the
variance (then, the Cramer-Rao measure) but also the disequilibrium associated
to the quantum-mechanical probability density can be explicitly expressed in
terms of the three quantum numbers (n, l, m) of the corresponding state.
Second, the three composite measures mentioned above are analytically,
numerically and physically discussed for both ground and excited states. It is
observed, in particular, that these configuration complexities do not depend on
the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to
quadratically depend on the principal quantum number n. Finally, sharp upper
bounds to the Fisher-Shannon measure and the shape complexity of a general
hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i
Astrophysical Reaction Rates for B(p,)Be and B(p,)Be From a Direct Model
The reactions B(p,)Be and B(p,)Be
are studied at thermonuclear energies using DWBA calculations. For both
reactions, transitions to the ground states and first excited states are
investigated. In the case of B(p,)Be, a resonance at
keV can be consistently described in the potential model, thereby
allowing the extension of the astrophysical -factor data to very low
energies. Strong interference with a resonance at about keV
require a Breit-Wigner description of that resonance and the introduction of an
interference term for the reaction B(p,)Be. Two
isospin resonances (at keV and keV)
observed in the B+p reactions necessitate Breit-Wigner resonance and
interference terms to fit the data of the B(p,)Be
reaction. -factors and thermonuclear reaction rates are given for each
reaction. The present calculation is the first consistent parametrization for
the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint
also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres
CLES, Code Liegeois d'Evolution Stellaire
Cles is an evolution code recently developed to produce stellar models
meeting the specific requirements of studies in asteroseismology. It offers the
users a lot of choices in the input physics they want in their models and its
versatility allows them to tailor the code to their needs and implement easily
new features. We describe the features implemented in the current version of
the code and the techniques used to solve the equations of stellar structure
and evolution. A brief account is given of the use of the program and of a
solar calibration realized with it.Comment: Comments: 8 pages, Astrophys. Space Sci. CoRoT-ESTA Volume, in the
pres
Methodological framework for World Health Organization estimates of the global burden of foodborne disease
Background: The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization to estimate the global burden of foodborne diseases (FBDs). This paper describes the methodological framework developed by FERG's Computational Task Force to transform epidemiological information into FBD burden estimates. Methods and Findings: The global and regional burden of 31 FBDs was quantified, along with limited estimates for 5 other FBDs, using Disability-Adjusted Life Years in a hazard- and incidence-based approach. To accomplish this task, the following workflow was defined: outline of disease models and collection of epidemiological data; design and completion of a database template; development of an imputation model; identification of disability weights; probabilistic burden assessment; and estimating the proportion of the disease burden by each hazard that is attributable to exposure by food (i.e., source attribution). All computations were performed in R and the different functions were compiled in the R package 'FERG'. Traceability and transparency were ensured by sharing results and methods in an interactive way with all FERG members throughout the process. Conclusions: We developed a comprehensive framework for estimating the global burden of FBDs, in which methodological simplicity and transparency were key elements. All the tools developed have been made available and can be translated into a user-friendly national toolkit for studying and monitoring food safety at the local level
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Incised valley paleoenvironments interpreted by seismic stratigraphic approach in Patos Lagoon, Southern Brazil
<div><p>ABSTRACT: The Rio Grande do Sul (RS) coastal plain area (33,000 km 2 ) had its physiography modified several times through the Quaternary, responding to allogenic and autogenic forcings. The Patos Lagoon covers a significant area of RS coastal plain (10,000 km 2 ), where incised valleys were identified in previous works. About 1,000 km of high resolution (3.5 kHz) seismic profiles, radiocarbon datings, Standard Penetration Test (SPT) and gravity cores were analyzed to interpret the paleoenvironmental evolution as preserved in incised valley infills. Seismic facies were recognized by seismic parameters. The sediment cores were used to ground-truth the seismic interpretations and help in the paleoenvironmental identification. Key surfaces were established to detail the stratigraphical framework, and seismic facies were grouped into four seismic units, which one classified in respective system tracts within three depositional sequences. The oldest preserved deposits are predominantly fluvial and estuarine facies, representing the falling stage and lowstand system tracts. The Holocene transgressive records are dominated by muddy material, mainly represented by estuarine facies with local variations. The transgression culminated in Late Holocene deposits of Patos Lagoon, representing the highstand system tract. The depositional pattern of the vertical succession was controlled by eustatic variations, while the autogenic forcing (paleogeography and sediment supply) modulated the local facies variation.</p></div
Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS
On very large scales, density fluctuations in the Universe are small,
suggesting a perturbative model for large-scale clustering of galaxies (or
other dark matter tracers), in which the galaxy density is written as a Taylor
series in the local mass density, delta, with the unknown coefficients in the
series treated as free "bias" parameters. We extend this model to include
dependence of the galaxy density on the local values of nabla_i nabla_j phi and
nabla_i v_j, where phi is the potential and v is the peculiar velocity. We show
that only two new free parameters are needed to model the power spectrum and
bispectrum up to 4th order in the initial density perturbations, once symmetry
considerations and equivalences between possible terms are accounted for. One
of the new parameters is a bias multiplying s_ij s_ji, where s_ij=[nabla_i
nabla_j \nabla^-2 - 1/3 delta^K_ij] delta. The other multiplies s_ij t_ji,
where t_ij=[nabla_i nabla_j nabla^-2 - 1/3 delta^K_ij](theta-delta), with
theta=-(a H dlnD/dlna)^-1 nabla_i v_i. (There are other, observationally
equivalent, ways to write the two terms, e.g., using theta-delta instead of
s_ij s_ji.) We show how short-range (non-gravitational) non-locality can be
included through a controlled series of higher derivative terms, starting with
R^2 nabla^2 delta, where R is the scale of non-locality (this term will be a
small correction as long as k^2 R^2 is small, where k is the observed
wavenumber). We suggest that there will be much more information in future huge
redshift surveys in the range of scales where beyond-linear perturbation theory
is both necessary and sufficient than in the fully linear regime.Comment: 24 pg., 5 fi
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
- …