29,045 research outputs found
Apparatus for disintegrating kidney stones
The useful life of the wire probe in an ultrasonic kidney stone disintegration instrument is enhanced and prolonged by attaching the wire of the wire probe to the tip of an ultrasonic transducer by means of a clamping arrangement. Additionally, damping material is applied to the wire probe in the form of a damper tube through which the wire probe passes in the region adjacent the transducer tip. The damper tube extends outwardly from the transducer tip a predetermined distance, terminating in a resilient soft rubber joint. Also, the damper tube is supported intermediate its length by a support member. The damper system thus acts to inhibit lateral vibrations of the wire in the region of the transducer tip while providing little or no damping to the linear vibrations imparted to the wire by the transducer
Device for removing foreign objects from anatomic organs
A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object
Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data
The cosmological parameters prefered by the cosmic microwave background (CMB)
primary anisotropies predict many more galaxy clusters than those that have
been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This tension has
attracted considerable attention since it could be evidence of physics beyond
the simplest CDM model. However, an accurate and robust calibration of
the mass-observable relation for clusters is necessary for the comparison,
which has been proven difficult to obtain so far. Here, we present new
contraints on the mass-pressure relation by combining tSZ and CMB lensing
measurements about optically-selected clusters. Consequently, our galaxy
cluster sample is independent from the data employed to derive cosmological
constrains. We estimate an average hydrostatic mass bias of , with no significant mass nor redshift evolution. This value greatly
reduces the tension between the predictions of CDM and the observed
abundance of tSZ clusters while being in agreement with recent estimations from
tSZ clustering. On the other hand, our value for is higher than the
predictions from hydro-dynamical simulations. This suggests the existence of
mechanisms driving large departures from hydrostatic equilibrium and that are
not included in state-of-the-art simulations, and/or unaccounted systematic
errors such as biases in the cluster catalogue due to the optical selection.Comment: 4 pages, 3 figure
Welfare, inequality and financial consequences of a multi-pillar pension system. A reform in Peru.
The distributional impact of the structural pension reform in Latin American countries has been largely absent in the economic debate. However, this reform may widen inequality in old‐age and reduce welfare. In this paper we study the consequences of implementing a multi‐pillar system in one of these countries. We take advantage of available administrative records for Peruvian workers to estimate inequality in pensions, pension debt and welfare. Overall, our results show that the pension debt and inequality can be substantially reduced without welfare losses. Thus, the proposed multi‐pillar system allows recovering the principle of solidarity and saves fiscal resources.Pension reform; Pension inequality; Social security; Latin America; Peru;
- …