1,311 research outputs found

    Anisotropic properties of MgB2 by torque magnetometry

    Full text link
    Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.Comment: 2 p.,2 Fig., submitted to Physica C (M2S-Rio proceedings); v2: 1 ref adde

    Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5

    Full text link
    Iron-chalcogenide single crystals with the nominal composition FeSe0.5_{0.5}Te0.5_{0.5} and a transition temperature of Tc14.6T_{c}\simeq14.6 K were synthesized by the Bridgman method. The structural and anisotropic superconducting properties of those crystals were investigated by means of single crystal X-ray and neutron powder diffraction, SQUID and torque magnetometry, and muon-spin rotation. Room temperature neutron powder diffraction reveals that 95% of the crystal volume is of the same tetragonal structure as PbO. The structure refinement yields a stoichiometry of Fe_1.045Se_0.406Te_0.594. Additionally, a minor hexagonal Fe_7Se_8 impurity phase was identified. The magnetic penetration depth \lambda at zero temperature was found to be 491(8) nm in the ab-plane and 1320(14) nm along the c-axis. The zero-temperature value of the superfluid density \rho_s(0) \lambda^-2(0) obeys the empirical Uemura relation observed for various unconventional superconductors, including cuprates and iron-pnictides. The temperature dependences of both \lambda_ab and \lambda_c are well described by a two-gap s+s-wave model with the zero-temperature gap values of \Delta_S(0)=0.51(3) meV and \Delta_L(0)=2.61(9) meV for the small and the large gap, respectively. The magnetic penetration depth anisotropy parameter \gamma_\lambda(T)=\lambda_c(T)/\lambda_{ab}(T) increases with decreasing temperature, in agreement with \gamma_\lambda(T) observed in the iron-pnictide superconductors

    Sheared Ising models in three dimensions

    Full text link
    The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures T_c which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent theta=2 as well as the correlation length exponents nu_parallel=1 and nu_perp=1/2. These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior.Comment: 6 pages, 3 figure

    Point-contact spectroscopy of Al- and C-doped MgB2. Superconducting energy gaps and scattering studies

    Full text link
    The two-band/two-gap superconductivity in aluminium and carbon doped MgB2_2 has been addressed by the point-contact spectroscopy. Two gaps are preserved in all samples with TcsT_c's down to 22 K. The evolution of two gaps as a function of the critical temperature in the doped systems suggest the dominance of the band-filling effects but for the increased Al-doping the enhanced interband scattering approaching two gaps must be considered. The magnetic field dependences of the Andreev reflection excess currents as well as zero-energy density of states determined from the experimental data are used to analyze the intraband scattering. It is shown, that while the C-doping increases the intraband scattering in the π\pi-band more rapidly then in the σ\sigma band, the Al-doping does not change their relative weight.Comment: 8 pages, incl. 6 figure

    Anisotropy and internal field distribution of MgB2 in the mixed state at low temperatures

    Get PDF
    Magnetization and muon spin relaxation on MgB2 were measured as a function of field at 2 K. Both indicate an inverse-squared penetration depth strongly decreasing with increasing field H below about 1 T. Magnetization also suggests the anisotropy of the penetration depth to increase with increasing H, interpolating between a low Hc1 and a high Hc2 anisotropy. Torque vs angle measurements are in agreement with this finding, while also ruling out drastic differences between the mixed state anisotropies of the two basic length scales penetration depth and coherence length.Comment: 4 pages, 4 figure
    corecore