1,460 research outputs found

    The Computational Power of Beeps

    Full text link
    In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. We then show the bound tight with a matching upper bound. Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state optimality to gain efficiency. We then turn our attention to more general classes of problems by proving that once you have enough states to solve leader election with a given error bound, you have (within constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with a constant number of unary input tapes: allowing you to solve a large and expressive set of problems. These results identify a key simplicity threshold beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International Symposium on Distributed Computing (DISC 2015

    Global Versus Local Computations: Fast Computing with Identifiers

    Full text link
    This paper studies what can be computed by using probabilistic local interactions with agents with a very restricted power in polylogarithmic parallel time. It is known that if agents are only finite state (corresponding to the Population Protocol model by Angluin et al.), then only semilinear predicates over the global input can be computed. In fact, if the population starts with a unique leader, these predicates can even be computed in a polylogarithmic parallel time. If identifiers are added (corresponding to the Community Protocol model by Guerraoui and Ruppert), then more global predicates over the input multiset can be computed. Local predicates over the input sorted according to the identifiers can also be computed, as long as the identifiers are ordered. The time of some of those predicates might require exponential parallel time. In this paper, we consider what can be computed with Community Protocol in a polylogarithmic number of parallel interactions. We introduce the class CPPL corresponding to protocols that use O(nlogkn)O(n\log^k n), for some k, expected interactions to compute their predicates, or equivalently a polylogarithmic number of parallel expected interactions. We provide some computable protocols, some boundaries of the class, using the fact that the population can compute its size. We also prove two impossibility results providing some arguments showing that local computations are no longer easy: the population does not have the time to compare a linear number of consecutive identifiers. The Linearly Local languages, such that the rational language (ab)(ab)^*, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO 201

    Learning cover context-free grammars from structural data

    Get PDF
    We consider the problem of learning an unknown context-free grammar when the only knowledge available and of interest to the learner is about its structural descriptions with depth at most .\ell. The goal is to learn a cover context-free grammar (CCFG) with respect to \ell, that is, a CFG whose structural descriptions with depth at most \ell agree with those of the unknown CFG. We propose an algorithm, called LALA^\ell, that efficiently learns a CCFG using two types of queries: structural equivalence and structural membership. We show that LALA^\ell runs in time polynomial in the number of states of a minimal deterministic finite cover tree automaton (DCTA) with respect to \ell. This number is often much smaller than the number of states of a minimum deterministic finite tree automaton for the structural descriptions of the unknown grammar

    Synthesizing and tuning chemical reaction networks with specified behaviours

    Full text link
    We consider how to generate chemical reaction networks (CRNs) from functional specifications. We propose a two-stage approach that combines synthesis by satisfiability modulo theories and Markov chain Monte Carlo based optimisation. First, we identify candidate CRNs that have the possibility to produce correct computations for a given finite set of inputs. We then optimise the reaction rates of each CRN using a combination of stochastic search techniques applied to the chemical master equation, simultaneously improving the of correct behaviour and ruling out spurious solutions. In addition, we use techniques from continuous time Markov chain theory to study the expected termination time for each CRN. We illustrate our approach by identifying CRNs for majority decision-making and division computation, which includes the identification of both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference on DNA Computing and Molecular Programming, 201

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols

    Get PDF
    In this work we focus on a natural class of population protocols whose dynamics are modelled by the discrete version of Lotka-Volterra equations. In such protocols, when an agent aa of type (species) ii interacts with an agent bb of type (species) jj with aa as the initiator, then bb's type becomes ii with probability P_ijP\_{ij}. In such an interaction, we think of aa as the predator, bb as the prey, and the type of the prey is either converted to that of the predator or stays as is. Such protocols capture the dynamics of some opinion spreading models and generalize the well-known Rock-Paper-Scissors discrete dynamics. We consider the pairwise interactions among agents that are scheduled uniformly at random. We start by considering the convergence time and show that any Lotka-Volterra-type protocol on an nn-agent population converges to some absorbing state in time polynomial in nn, w.h.p., when any pair of agents is allowed to interact. By contrast, when the interaction graph is a star, even the Rock-Paper-Scissors protocol requires exponential time to converge. We then study threshold effects exhibited by Lotka-Volterra-type protocols with 3 and more species under interactions between any pair of agents. We start by presenting a simple 4-type protocol in which the probability difference of reaching the two possible absorbing states is strongly amplified by the ratio of the initial populations of the two other types, which are transient, but "control" convergence. We then prove that the Rock-Paper-Scissors protocol reaches each of its three possible absorbing states with almost equal probability, starting from any configuration satisfying some sub-linear lower bound on the initial size of each species. That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a distributed system. Some of our techniques may be of independent value
    corecore