1,460 research outputs found
The Computational Power of Beeps
In this paper, we study the quantity of computational resources (state
machine states and/or probabilistic transition precision) needed to solve
specific problems in a single hop network where nodes communicate using only
beeps. We begin by focusing on randomized leader election. We prove a lower
bound on the states required to solve this problem with a given error bound,
probability precision, and (when relevant) network size lower bound. We then
show the bound tight with a matching upper bound. Noting that our optimal upper
bound is slow, we describe two faster algorithms that trade some state
optimality to gain efficiency. We then turn our attention to more general
classes of problems by proving that once you have enough states to solve leader
election with a given error bound, you have (within constant factors) enough
states to simulate correctly, with this same error bound, a logspace TM with a
constant number of unary input tapes: allowing you to solve a large and
expressive set of problems. These results identify a key simplicity threshold
beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International
Symposium on Distributed Computing (DISC 2015
Global Versus Local Computations: Fast Computing with Identifiers
This paper studies what can be computed by using probabilistic local
interactions with agents with a very restricted power in polylogarithmic
parallel time. It is known that if agents are only finite state (corresponding
to the Population Protocol model by Angluin et al.), then only semilinear
predicates over the global input can be computed. In fact, if the population
starts with a unique leader, these predicates can even be computed in a
polylogarithmic parallel time. If identifiers are added (corresponding to the
Community Protocol model by Guerraoui and Ruppert), then more global predicates
over the input multiset can be computed. Local predicates over the input sorted
according to the identifiers can also be computed, as long as the identifiers
are ordered. The time of some of those predicates might require exponential
parallel time. In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We introduce the
class CPPL corresponding to protocols that use , for some k,
expected interactions to compute their predicates, or equivalently a
polylogarithmic number of parallel expected interactions. We provide some
computable protocols, some boundaries of the class, using the fact that the
population can compute its size. We also prove two impossibility results
providing some arguments showing that local computations are no longer easy:
the population does not have the time to compare a linear number of consecutive
identifiers. The Linearly Local languages, such that the rational language
, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO
201
Learning cover context-free grammars from structural data
We consider the problem of learning an unknown context-free grammar when the
only knowledge available and of interest to the learner is about its structural
descriptions with depth at most The goal is to learn a cover
context-free grammar (CCFG) with respect to , that is, a CFG whose
structural descriptions with depth at most agree with those of the
unknown CFG. We propose an algorithm, called , that efficiently learns
a CCFG using two types of queries: structural equivalence and structural
membership. We show that runs in time polynomial in the number of
states of a minimal deterministic finite cover tree automaton (DCTA) with
respect to . This number is often much smaller than the number of states
of a minimum deterministic finite tree automaton for the structural
descriptions of the unknown grammar
Synthesizing and tuning chemical reaction networks with specified behaviours
We consider how to generate chemical reaction networks (CRNs) from functional
specifications. We propose a two-stage approach that combines synthesis by
satisfiability modulo theories and Markov chain Monte Carlo based optimisation.
First, we identify candidate CRNs that have the possibility to produce correct
computations for a given finite set of inputs. We then optimise the reaction
rates of each CRN using a combination of stochastic search techniques applied
to the chemical master equation, simultaneously improving the of correct
behaviour and ruling out spurious solutions. In addition, we use techniques
from continuous time Markov chain theory to study the expected termination time
for each CRN. We illustrate our approach by identifying CRNs for majority
decision-making and division computation, which includes the identification of
both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference
on DNA Computing and Molecular Programming, 201
On the Usability of Probably Approximately Correct Implication Bases
We revisit the notion of probably approximately correct implication bases
from the literature and present a first formulation in the language of formal
concept analysis, with the goal to investigate whether such bases represent a
suitable substitute for exact implication bases in practical use-cases. To this
end, we quantitatively examine the behavior of probably approximately correct
implication bases on artificial and real-world data sets and compare their
precision and recall with respect to their corresponding exact implication
bases. Using a small example, we also provide qualitative insight that
implications from probably approximately correct bases can still represent
meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph
On the Parity Problem in One-Dimensional Cellular Automata
We consider the parity problem in one-dimensional, binary, circular cellular
automata: if the initial configuration contains an odd number of 1s, the
lattice should converge to all 1s; otherwise, it should converge to all 0s. It
is easy to see that the problem is ill-defined for even-sized lattices (which,
by definition, would never be able to converge to 1). We then consider only odd
lattices.
We are interested in determining the minimal neighbourhood that allows the
problem to be solvable for any initial configuration. On the one hand, we show
that radius 2 is not sufficient, proving that there exists no radius 2 rule
that can possibly solve the parity problem from arbitrary initial
configurations. On the other hand, we design a radius 4 rule that converges
correctly for any initial configuration and we formally prove its correctness.
Whether or not there exists a radius 3 rule that solves the parity problem
remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
In this work we focus on a natural class of population protocols whose
dynamics are modelled by the discrete version of Lotka-Volterra equations. In
such protocols, when an agent of type (species) interacts with an agent
of type (species) with as the initiator, then 's type becomes
with probability . In such an interaction, we think of as the
predator, as the prey, and the type of the prey is either converted to that
of the predator or stays as is. Such protocols capture the dynamics of some
opinion spreading models and generalize the well-known Rock-Paper-Scissors
discrete dynamics. We consider the pairwise interactions among agents that are
scheduled uniformly at random. We start by considering the convergence time and
show that any Lotka-Volterra-type protocol on an -agent population converges
to some absorbing state in time polynomial in , w.h.p., when any pair of
agents is allowed to interact. By contrast, when the interaction graph is a
star, even the Rock-Paper-Scissors protocol requires exponential time to
converge. We then study threshold effects exhibited by Lotka-Volterra-type
protocols with 3 and more species under interactions between any pair of
agents. We start by presenting a simple 4-type protocol in which the
probability difference of reaching the two possible absorbing states is
strongly amplified by the ratio of the initial populations of the two other
types, which are transient, but "control" convergence. We then prove that the
Rock-Paper-Scissors protocol reaches each of its three possible absorbing
states with almost equal probability, starting from any configuration
satisfying some sub-linear lower bound on the initial size of each species.
That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a
distributed system. Some of our techniques may be of independent value
- …
