1,176 research outputs found

    Inhibition of spontaneous emission in Fermi gases

    Full text link
    Fermi inhibition is a quantum statistical analogue for the inhibition of spontaneous emission by an excited atom in a cavity. This is achieved when the relevant motional states are already occupied by a cloud of cold atoms in the internal ground state. We exhibit non-trivial effects at finite temperature and in anisotropic traps, and briefly consider a possible experimental realization.Comment: 4 pages with 3 figure

    Condensates beyond mean field theory: quantum backreaction as decoherence

    Get PDF
    We propose an experiment to measure the slow log(N) convergence to mean-field theory (MFT) around a dynamical instability. Using a density matrix formalism, we derive equations of motion which go beyond MFT and provide accurate predictions for the quantum break-time. The leading quantum corrections appear as decoherence of the reduced single-particle quantum state.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model

    Full text link
    A simple four-mode Bose-Hubbard model with intrinsic time scale separation can be considered as a paradigm for mesoscopic quantum systems in thermal contact. In our previous work we showed that in addition to coherent particle exchange, a novel slow collective excitation can be identified by a series of Holstein-Primakoff transformations. This resonant energy exchange mode is not predicted by linear Bogoliubov theory, and its frequency is sensitive to interactions among Bogoliubov quasi-particles; it may be referred to as a second Josephson oscillation, in analogy to the second sound mode of liquid Helium II. In this paper we will explore this system beyond the Gross-Pitaevskii mean field regime. We directly compare the classical mean field dynamics to the exact full quantum many-particle dynamics and show good agreement over a large range of the system parameters. The second Josephson frequency becomes imaginary for stronger interactions, however, indicating dynamical instability of the symmetric state. By means of a generalized quantum phase model for the full four-mode system, we then show that, in this regime, high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites, while the actual particles preferentially occupy the opposite pair. We interpret this as a simple model for thermal pressure

    Introduction to This Special Issue: Faculty Intellectual Property in the Digital Age

    Get PDF
    (First paragraph) Prior to the third generation of distance education that is described as telelearning (Taylor 1995) or teleconferencing (Moore and Kearsley 1996), there were few questions about the ownership of a faculty member’s intellectual property. It was extremely rare for an institution to claim ownership of a professor’s class materials whether lecture notes, flip charts, overhead transparencies, audio and video recording, monographs, handouts or tests. With the advent of Internet-based distance education delivery systems including 2-way audio and video as well as online courses, the issue of intellectual property ownership has grown complex

    Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory

    Full text link
    We study the dynamics of a two-mode Bose-Einstein condensate in the vicinity of a mean-field dynamical instability. Convergence to mean-field theory (MFT), with increasing total number of particles NN, is shown to be logarithmically slow. Using a density matrix formalism rather than the conventional wavefunction methods, we derive an improved set of equations of motion for the mean-field plus the fluctuations, which goes beyond MFT and provides accurate predictions for the leading quantum corrections and the quantum break time. We show that the leading quantum corrections appear as decoherence of the reduced single-particle quantum state; we also compare this phenomenon to the effects of thermal noise. Using the rapid dephasing near an instability, we propose a method for the direct measurement of scattering lengths.Comment: 17 pages, 9 figures, Phys. Rev. A 64, 0136XX (2001

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Instabilities of wave function monopoles in Bose-Einstein condensates

    Full text link
    We present analytic and numerical results for a class of monopole solutions to the two-component Gross-Pitaevski equation for a two-species Bose condensate in an effectively two-dimensional trap. We exhibit dynamical instabilities involving vortex production as one species pours through another, from which we conclude that the sub-optical sharpness of potentials exerted by matter waves makes condensates ideal tools for manipulating condensates. We also show that there are two equally valid but drastically different hydrodynamic descriptions of a two-component condensate, and illustrate how different phenomena may appear simpler in each.Comment: 4 pages, 9 figures (compressed figures become legible when zoomed or when paper is actually printed

    Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate

    Full text link
    We study the system of coupled atomic and molecular condensates within the two-mode model and beyond mean-field theory (MFT). Large amplitude atom-molecule coherent oscillations are shown to be damped by the rapid growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscillation is also shown to scale as N/log⁥N\sqrt{N}/\log N with the total number of atoms NN, rather than the expected pure N\sqrt{N} scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular condensate in the vicinity of the instability, and show that the important effect neglected by mean field theory is an initially non-exponential `spontaneous' dissociation into the atomic vacuum. Starting with a small population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the fastest (super-exponential) rate observed for the entangled state, formed by spontaneous dissociation.Comment: LaTeX, 5 pages, 3 PostScript figures, uses REVTeX and epsfig, submitted to Physical Review A, Rapid Communication
    • 

    corecore