12 research outputs found
Dynamic Response of Ising System to a Pulsed Field
The dynamical response to a pulsed magnetic field has been studied here both
using Monte Carlo simulation and by solving numerically the meanfield dynamical
equation of motion for the Ising model. The ratio R_p of the response
magnetisation half-width to the width of the external field pulse has been
observed to diverge and pulse susceptibility \chi_p (ratio of the response
magnetisation peak height and the pulse height) gives a peak near the
order-disorder transition temperature T_c (for the unperturbed system). The
Monte Carlo results for Ising system on square lattice show that R_p diverges
at T_c, with the exponent , while \chi_p shows a peak at
, which is a function of the field pulse width . A finite size
(in time) scaling analysis shows that , with
. The meanfield results show that both the divergence of R
and the peak in \chi_p occur at the meanfield transition temperature, while the
peak height in , for small values of
. These results also compare well with an approximate analytical
solution of the meanfield equation of motion.Comment: Revtex, Eight encapsulated postscript figures, submitted to Phys.
Rev.
Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure
We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56–79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes.publishedVersio
Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result
We give a rigorous proof of the existence of spontaneous magnetization at
finite temperature for the Ising spin model defined on the Sierpinski carpet
fractal. The theorem is inspired by the classical Peierls argument for the two
dimensional lattice. Therefore, this exact result proves the existence of
spontaneous magnetization for the Ising model in low dimensional structures,
i.e. structures with dimension smaller than 2.Comment: 14 pages, 8 figure
On large deviation properties of Erdos-Renyi random graphs
We show that large deviation properties of Erd\"os-R\'enyi random graphs can
be derived from the free energy of the -state Potts model of statistical
mechanics. More precisely the Legendre transform of the Potts free energy with
respect to is related to the component generating function of the graph
ensemble. This generalizes the well-known mapping between typical properties of
random graphs and the limit of the Potts free energy. For
exponentially rare graphs we explicitly calculate the number of components, the
size of the giant component, the degree distributions inside and outside the
giant component, and the distribution of small component sizes. We also perform
numerical simulations which are in very good agreement with our analytical
work. Finally we demonstrate how the same results can be derived by studying
the evolution of random graphs under the insertion of new vertices and edges,
without recourse to the thermodynamics of the Potts model.Comment: 38 pages, 9 figures, Latex2e, corrected and extended version
including numerical simulation result
Multifractals of Normalized First Passage Time in Sierpinski Gasket
The multifractal behavior of the normalized first passage time is
investigated on the two dimensional Sierpinski gasket with both absorbing and
reflecting barriers. The normalized first passage time for Sinai model and the
logistic model to arrive at the absorbing barrier after starting from an
arbitrary site, especially obtained by the calculation via the Monte Carlo
simulation, is discussed numerically. The generalized dimension and the
spectrum are also estimated from the distribution of the normalized first
passage time, and compared with the results on the finitely square lattice.Comment: 10 pages, Latex, with 3 figures and 1 table. to be published in J.
Phys. Soc. Jpn. Vol.67(1998
The Computational Complexity of Generating Random Fractals
In this paper we examine a number of models that generate random fractals.
The models are studied using the tools of computational complexity theory from
the perspective of parallel computation. Diffusion limited aggregation and
several widely used algorithms for equilibrating the Ising model are shown to
be highly sequential; it is unlikely they can be simulated efficiently in
parallel. This is in contrast to Mandelbrot percolation that can be simulated
in constant parallel time. Our research helps shed light on the intrinsic
complexity of these models relative to each other and to different growth
processes that have been recently studied using complexity theory. In addition,
the results may serve as a guide to simulation physics.Comment: 28 pages, LATEX, 8 Postscript figures available from
[email protected]
Fractal chemical kinetics: Reacting random walkers
Computer simulations on binary reactions of random walkers ( A + A → A ) on fractal spaces bear out a recent conjecture: ( ρ −1 − ρ 0 −1 ) ∞ t f , where ρ is the instantaneous walker density and ρ 0 the initial one, and f = d s /2, where d s is the spectral dimension. For the Sierpinski gaskets: d =2, 2 f =1.38 ( d s =1.365); d =3, 2 f =1.56 ( d s =1.547); biased initial random distributions are compared to unbiased ones. For site percolation: d = 2, p =0.60, 2 f = 1.35 ( d s =1.35); d=3, p =0.32, 2 f =1.37 ( d s =1.4); fractal-to-Euclidean crossovers are also observed. For energetically disordered lattices, the effective 2 f (from reacting walkers) and d s (from single walkers) are in good agreement, in both two and three dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45149/1/10955_2005_Article_BF01012924.pd
Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure
We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56–79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes
Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure
We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56–79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes