4 research outputs found

    Prevalence and Demographic Risk Factors of Mycobacterium tuberculosis Infections in Captive Asian Elephants (Elephas maximus) Based on Serological Assays

    Get PDF
    To address putative TB statuses of elephants and to identify and quantify potential demographic risk factors for TB, three ELISAs specific for different mycobacterial antigens (ESAT6, CFP10, MPB83) and the TB Stat-Pak assay were used as surrogate serological markers for TB infection in elephants. In view of the low number of animals of which the infected status could be confirmed (4 out of 708) Latent Class Analyses of TB serology test outcomes was used to predict the putative TB status of each of 708 elephants as positive (17.3%), inconclusive (48.7%), or negative (34%) when assessed on a population basis. Correlation between test performance of the individual assays was high between the ELISAs, but low with that of the TB Stat-Pak assay. Risk factors, assessed based on cut off values for each of the ELISAs determined by ROC analysis, included sex, BCS, age, working time, feed type, management system, camp size and region. Old age elephants were more likely to show a positive TB serology test outcome, than younger ones. Elephants working 7 h per day and the ones in good condition BCS (7–11) were less likely to be positive in TB serology testing. In addition, fewer animals in the large camp size (31–50 elephants) were found to be positive in ELISA tests, compared to elephants in the other camp sizes. In this study, the North region had the lowest percentages of elephants with positive TB test outcome, the West region and to a lesser extend the other regions showed clearly higher percentages of positive animals. Even though assays used in the present study have not been validated yet, results obtained showed promise as diagnostic or screening tests. For the diagnosis of animals suspected to be infected, the ELISA tests, once further optimized for the individual antigens, can be used in parallel. For screening of complete camps for presence or absence of infection, a single optimized ELISA test can be utilized

    Genetic assessment of captive elephant (Elephas maximus) populations in Thailand

    No full text
    The genetic diversity and population structure of 136 captive Thai elephants (Elephas maximus) with known region of origin were investigated by analysis of 14 highly polymorphic microsatellite loci. We did not detect significant indications of inbreeding and only a low differentiation of elephants from different regions. This is probably explained by the combined effects of isolation by distance and exchange between different regions or between captive and wild elephant populations. Estimates of effective population sizes were in the range of 90-240 individuals, which emphasizes the necessity to guard against inbreeding as caused by the current use of a restricted number of breeding bulls. © Springer Science+Business Media B.V. 2009

    Genetic assessment of captive elephant (Elephas maximus) populations in Thailand

    No full text
    The genetic diversity and population structure of 136 captive Thai elephants (Elephas maximus) with known region of origin were investigated by analysis of 14 highly polymorphic microsatellite loci. We did not detect significant indications of inbreeding and only a low differentiation of elephants from different regions. This is probably explained by the combined effects of isolation by distance and exchange between different regions or between captive and wild elephant populations. Estimates of effective population sizes were in the range of 90-240 individuals, which emphasizes the necessity to guard against inbreeding as caused by the current use of a restricted number of breeding bulls. © Springer Science+Business Media B.V. 2009

    Prevalence and Demographic Risk Factors of Mycobacterium tuberculosis Infections in Captive Asian Elephants (Elephas maximus) Based on Serological Assays

    No full text
    To address putative TB statuses of elephants and to identify and quantify potential demographic risk factors for TB, three ELISAs specific for different mycobacterial antigens (ESAT6, CFP10, MPB83) and the TB Stat-Pak assay were used as surrogate serological markers for TB infection in elephants. In view of the low number of animals of which the infected status could be confirmed (4 out of 708) Latent Class Analyses of TB serology test outcomes was used to predict the putative TB status of each of 708 elephants as positive (17.3%), inconclusive (48.7%), or negative (34%) when assessed on a population basis. Correlation between test performance of the individual assays was high between the ELISAs, but low with that of the TB Stat-Pak assay. Risk factors, assessed based on cut off values for each of the ELISAs determined by ROC analysis, included sex, BCS, age, working time, feed type, management system, camp size and region. Old age elephants were more likely to show a positive TB serology test outcome, than younger ones. Elephants working 7 h per day and the ones in good condition BCS (7–11) were less likely to be positive in TB serology testing. In addition, fewer animals in the large camp size (31–50 elephants) were found to be positive in ELISA tests, compared to elephants in the other camp sizes. In this study, the North region had the lowest percentages of elephants with positive TB test outcome, the West region and to a lesser extend the other regions showed clearly higher percentages of positive animals. Even though assays used in the present study have not been validated yet, results obtained showed promise as diagnostic or screening tests. For the diagnosis of animals suspected to be infected, the ELISA tests, once further optimized for the individual antigens, can be used in parallel. For screening of complete camps for presence or absence of infection, a single optimized ELISA test can be utilized
    corecore