2 research outputs found

    A straightforward molecular strategy to retrospectively investigate the spread of SARS-CoV-2 VOC202012/01 B.1.1.7 variant.

    Get PDF
    The spread of new SARS-CoV-2 variants represents a serious threat worldwide, thus rapid and cost-effective methods are required for their identification. Since November 2020, the TaqPath COVID-19 assay (Thermo Fisher Scientific) has been used to identify viral strains of the new lineage B.1.1.7, since it fails to detect the S-gene with the ∆69/70 deletion. Here, we proposed S-gene mutations screening with the Allplex SARS-CoV-2 assay (Seegene), another widely used RT-PCR test that targets Sarbecovirus E, SARS-CoV-2 N, and RdRp/S genes. Accordingly, we evaluated the S gene amplification curve pattern compared to those of the other genes. Exploiting an Allplex assay-generated dataset, we screened 663 RT-PCR digital records, including all SARS-CoV-2 respiratory samples tested in our laboratory with the Allplex assay between January 1st and February 25th, 2021. This approach enabled us to detect 64 samples with peculiar non-sigmoidal amplification curves. Sequencing a selected group of 4 RNA viral genomes demonstrated that those curves were associated with B.1.1.7 variant strains. Our results strongly suggest that B.1.1.7 variant spread has begun in this area at least since January and imply the potential of these analytical methods to track and characterize the spread of B.1.1.7 strains in those areas where Allplex SARS-CoV-2 datasets have been previously recorded

    Tracking the progressive spread of the SARS-CoV-2 Omicron variant in Italy, December 2021 to January 2022

    No full text
    The SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection
    corecore