2,250 research outputs found

    Fluctuations of the Fermi condensate in ideal gases

    Full text link
    We calculate numerically and analytically the fluctuations of the fermionic condensate and of the number of particles above the condensate for systems of constant density of states. We compare the canonical fluctuations, obtained from the equivalent Bose condensate fluctuation, with the grandcanonical fermionic calculation. The fluctuations of the condensate are almost the same in the two ensembles, with a small correction comming from the total particle number fluctuation in the grandcanonical ensemble. On the other hand the number of particles above the condensate and its fluctuation is insensitive to the choice of ensemble.Comment: 10 pages with 3 figs. IOP styl

    An ansatz for the exclusion statistics parameters in macroscopic physical systems described by fractional exclusion statistics

    Full text link
    I introduce an ansatz for the exclusion statistics parameters of fractional exclusion statistics (FES) systems and I apply it to calculate the statistical distribution of particles from both, bosonic and fermionic perspectives. Then, to check the applicability of the ansatz, I calculate the FES parameters in three well-known models: in a Fermi liquid type of system, a one-dimensional quantum systems described in the thermodynamic Bethe ansatz and quasiparticle excitations in the fractional quantum Hall (FQH) systems. The FES parameters of the first two models satisfy the ansatz, whereas those of the third model, although close to the form given by the ansatz, represent an exception. With this ocasion I also show that the general properties of the FES parameters, deduced elsewhere (EPL 87, 60009, 2009), are satisfied also by the parameters of the FQH liquid.Comment: 6 pages, EPL styl

    Quantization of the elastic modes in an isotropic plate

    Full text link
    We quantize the elastic modes in a plate. For this, we find a complete, orthogonal set of eigenfunctions of the elastic equations and we normalize them. These are the phonon modes in the plate and their specific forms and dispersion relations are manifested in low temperature experiments in ultra-thin membranes.Comment: 14 pages, 2 figure

    The thermodynamic limit for fractional exclusion statistics

    Full text link
    I discuss Haldane's concept of generalised exclusion statistics (Phys. Rev. Lett. {\bf 67}, 937, 1991) and I show that it leads to inconsistencies in the calculation of the particle distribution that maximizes the partition function. These inconsistencies appear when mutual exclusion statistics is manifested between different subspecies of particles in the system. In order to eliminate these inconsistencies, I introduce new mutual exclusion statistics parameters, which are proportional to the dimension of the Hilbert sub-space on which they act. These new definitions lead to properly defined particle distributions and thermodynamic properties. In another paper (arXiv:0710.0728) I show that fractional exclusion statistics manifested in general systems with interaction have these, physically consistent, statistics parameters.Comment: 8 page

    Condensation in ideal Fermi gases

    Full text link
    I investigate the possibility of condensation in ideal Fermi systems of general single particle density of states. For this I calculate the probability wN0w_{N_0} of having exactly N0N_0 particles in the condensate and analyze its maxima. The existence of such maxima at macroscopic values of N0N_0 indicates a condensate. An interesting situation occurs for example in 1D systems, where wN0w_{N_0} may have two maxima. One is at N0=0N_0=0 and another one may exist at finite N0N_0 (for temperatures bellow a certain condensation temperature). This suggests the existence of a first order phase transition. % The calculation of wN0w_{N_0} allows for the exploration of ensemble equivalence of Fermi systems from a new perspective.Comment: 8 pages with 1 figure. Will appear in J. Phys. A: Math. Gen. Changes (minor): I updated Ref. [9] and its citation in the text. I introduced citation for figure 1 in the tex

    Nonlinear supratransmission in multicomponent systems

    Full text link
    A method is proposed to solve the challenging problem of determining the supratransmission threshold (onset of instability of harmonic boundary driving inside a band gap) in multicomponent nonintegrable nonlinear systems. It is successfully applied to the degenerate three-wave resonant interaction in a birefringent quadratic medium where the process generates spatial gap solitons. No analytic expression is known for this model showing the broad applicability of the method to nonlinear systems.Comment: 4 pages, 3 figure
    corecore