31 research outputs found
A Novel Extracellular Hsp90 Mediated Co-Receptor Function for LRP1 Regulates EphA2 Dependent Glioblastoma Cell Invasion
Extracellular Hsp90 protein (eHsp90) potentiates cancer cell motility and invasion through a poorly understood mechanism involving ligand mediated function with its cognate receptor LRP1. Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal brain cancers. The receptor tyrosine kinase EphA2 is overexpressed in the majority of GBM specimens and is a critical mediator of GBM invasiveness through its AKT dependent activation of EphA2 at S897 (P-EphA2(S897)). We explored whether eHsp90 may confer invasive properties to GBM via regulation of EphA2 mediated signaling.We find that eHsp90 signaling is essential for sustaining AKT activation, P-EphA2(S897), lamellipodia formation, and concomitant GBM cell motility and invasion. Furthermore, eHsp90 promotes the recruitment of LRP1 to EphA2 in an AKT dependent manner. A finding supported by biochemical methodology and the dual expression of LRP1 and P-EphA2(S897) in primary and recurrent GBM tumor specimens. Moreover, hypoxia mediated facilitation of GBM motility and invasion is dependent upon eHsp90-LRP1 signaling. Hypoxia dramatically elevated surface expression of both eHsp90 and LRP1, concomitant with eHsp90 dependent activation of src, AKT, and EphA2.We herein demonstrate a novel crosstalk mechanism involving eHsp90-LRP1 dependent regulation of EphA2 function. We highlight a dual role for eHsp90 in transducing signaling via LRP1, and in facilitating LRP1 co-receptor function for EphA2. Taken together, our results demonstrate activation of the eHsp90-LRP1 signaling axis as an obligate step in the initiation and maintenance of AKT signaling and EphA2 activation, thereby implicating this pathway as an integral component contributing to the aggressive nature of GBM
Inversion of Rayleigh Wave Dispersion Curves via Long Short-Term Memory Combined with Particle Swarm Optimization
An essential step in surface wave exploration is the inversion of dispersion curves. By inverting dispersion curves, we can effectively establish the shear-wave velocity model and obtain reliable subsurface stratigraphic information. The inversion of dispersion curves is an inversion problem with multiple parameters and multiple poles, and obtaining a high precision solution is difficult. Among the methods of inversion of dispersion curves, local search methods are prone to fall into local extremes, and global search methods such as particle swarm optimization (PSO) and genetic algorithm (GA) present the disadvantages of slow convergence speed and low precision. Deep learning models with strong nonlinear mapping capability can effectively solve nonlinear problems. Therefore, we propose a method called PSO-optimized long short-term memory (LSTM) network (PSO-LSTM) to invert the dispersion curves in order to improve the effect of inversion of dispersion curves. The method is based on the LSTM network, and PSO is used to optimize the LSTM network structure and other parameters that need to be given manually to improve the prediction of the network. Two theoretical geological models are used in the paper: Model A and Model B to test the PSO-LSTM. The tests include the noisy data test and noise-free data test. Model A was tested without noise, and Model B was tested with noise. In addition, PSO and LSTM were tested on model A to compare the performance of PSO-LSTM. In Model A, the maximum relative errors of PSO and LSTM are 20.76% and 5.85%, respectively, and the maximum standard deviations of PSO and LSTM are 57.37 and 1.97, respectively. For PSO-LSTM, the maximum relative errors of Model A and Model B in the inverse results are 2.05% and 2.09%, and the maximum standard deviations of Model A and Model B in the inverse results are 1.23 and 3.87, respectively. The test results of Model A show that the inversion performance of PSO-LSTM is better than those of LSTM and PSO, and the performance of the network can be improved after PSO is used to optimize the network parameters. The inverse results from Model B show that the PSO-LSTM is robust and can invert the dispersion curves well even after adding noise to the model. Finally, the PSO-LSTM is used to invert the actual data from Wyoming, USA, which demonstrates that the PSO-LSTM can be used for the quantitative interpretation of Rayleigh wave dispersion curves
Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck
The majority of patients with recurrent/metastatic squamous cell carcinoma of the head and neck (HNSCC) (R/M) do not benefit from anti-PD-1 therapy. Hypoxia induced immunosuppression may be a barrier to immunotherapy. Therefore, we examined the metabolic effect of anti-PD-1 therapy in a murine MEER HNSCC model as well as intratumoral hypoxia in R/M patients. In order to characterize the tumor microenvironment in PD-1 resistance, a MEER cell line was created from the parental line that are completely resistant to anti-PD-1. These cell lines were then metabolically profiled using seahorse technology and injected into C57/BL6 mice. After tumor growth, mice were pulsed with pimonidazole and immunofluorescent imaging was performed to analyze hypoxia and T cell infiltration. To validate the preclinical results, we analyzed tissues from R/M patients (n=36) treated with anti-PD-1 mAb, via immunofluorescent imaging for number of CD8+ T cells (CD8), Tregs and the percent area (CAIX) and mean intensity (I) of carbonic anhydrase IX in tumor. We analyzed disease control rate (DCR), progression free survival (PFS), and overall survival (OS) using proportional odds and proportional hazards (Cox) regression. We found that anti-PD-1 resistant MEER has significantly higher oxidative metabolism, while there was no difference in glycolytic metabolism. Intratumoral hypoxia was significantly increased and CD8+ T cells decreased in anti-PD-1 resistant tumors compared with parental tumors in the same mouse. In R/M patients, lower tumor hypoxia by CAIX/I was significantly associated with DCR (p=0.007), PFS, and OS, and independently associated with response (p=0.028) and PFS (p=0.04) in a multivariate model including other significant immune factors. During PD-1 resistance, tumor cells developed increased oxidative metabolism leading to increased intratumoral hypoxia and a decrease in CD8+ T cells. Lower tumor hypoxia was independently associated with increased efficacy of anti-PD-1 therapy in patients with R/M HNSCC. To our knowledge this is the first analysis of the effect of hypoxia in this patient population and highlights its importance not only as a predictive biomarker but also as a potential target for therapeutic intervention
Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss
p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation
ATR alterations in Hodgkin's lymphoma
Hodgkin's lymphoma (HL) is characterized by the presence of neoplastic Hodgkin and Reed-Sternberg cells (HRSC) in a background of inflammatory cells. Free radicals and oxidative stress generated in the inflammatory lesions could cause DNA damage, thus providing a basis for lymphomagenesis. Ataxia-telangiectasia mutated (ATM) and Rad3-related (ATR) genes are responsive genes for DNA damage, therefore the potential involvement of the ATR gene in HL pathogenesis was examined in 8 HL cell lines and 7 clinical cases. ATR alterations were detected in 6 out of 8 HL lines. Most aberrant transcripts observed were heterozygous deletions, which may have resulted from aberrant splicing. ATR aberrant transcripts were also detected in 3 out of 7 clinical cases. Three alterations, del exon 4, deletion exon 29-34 and insertion of 137 bp in exon 46/47 were commonly observed in both cell lines and clinical samples. HL cells with ATR alterations except del exon 4 showed a delay/abrogation in repair for DNA double-strand breaks (DSBs) and single-strand break (SSB) as well as exhibiting a defect in p53 accumulation. These findings suggested the role of ATR gene alterations in HL lymphomagenesis