3 research outputs found

    Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers

    Get PDF
    Hydrolytically and enzymatically stable nanoscale synthetic constructs, with well-defined structures that exhibit antimicrobial activity, offer exciting possibilities for diverse applications in the emerging field of nanomedicine. Herein, we demonstrate that it is the core conformation, rather than periodicity, that ultimately controls the synthesis of sterically hindered aliphatic polyamide dendrimers. The latter self-interrupt at a predictable low generation number due to backfolding of their peripheral groups, which in turn leads to well-defined nanoarchitectures

    Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers

    No full text
    2,2-Bis(azidomethyl)propionic acid was prepared in four steps and 85% yield from the commercially available 2,2-bis(hydroxymethyl) propionic acid and used as the starting building block for the divergent, convergent, and double-stage convergent-divergent iterative methods for the synthesis of dendrimers and dendrons containing ethylenediamine (EDA), piperazine (PPZ), and methyl 2,2- bis(aminomethyl)propionate (COOMe) cores. These cores have the same multiplicity but different conformations. A diversity of synthetic methods were used for the synthesis of dendrimers and dendrons. Regardless of the method used, a self-interruption of the synthesis was observed at generation 4 for the dendrimer with an EDA core and at generation 5 for the one with a PPZ core, whereas for the COOMe core, self-interruption was observed at generation 6 dendron, which is equivalent to generation 5 dendrimer. Molecular modeling and molecular-dynamics simulations demonstrated that the observed self-interruption is determined by the backfolding of the azide groups at the periphery of the dendrimer. The latter conformation inhibits completely the heterogeneous hydrogenation of the azide groups catalyzed by 10% Pd/carbon as well as homogeneous hydrogenation by the Staudinger method. These self-terminated polyamide dendrimers are enzymatically and hydrolytically stable and also exhibit antimicrobial activity. Thus, these nanoscale constructs open avenues for biomedical applications

    Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers

    No full text
    2,2-Bis(azidomethyl)propionic acid was prepared in four steps and 85% yield from the commercially available 2,2-bis(hydroxymethyl)propionic acid and used as the starting building block for the divergent, convergent, and double-stage convergent–divergent iterative methods for the synthesis of dendrimers and dendrons containing ethylenediamine (EDA), piperazine (PPZ), and methyl 2,2-bis(aminomethyl)propionate (COOMe) cores. These cores have the same multiplicity but different conformations. A diversity of synthetic methods were used for the synthesis of dendrimers and dendrons. Regardless of the method used, a self-interruption of the synthesis was observed at generation 4 for the dendrimer with an EDA core and at generation 5 for the one with a PPZ core, whereas for the COOMe core, self-interruption was observed at generation 6 dendron, which is equivalent to generation 5 dendrimer. Molecular modeling and molecular-dynamics simulations demonstrated that the observed self-interruption is determined by the backfolding of the azide groups at the periphery of the dendrimer. The latter conformation inhibits completely the heterogeneous hydrogenation of the azide groups catalyzed by 10% Pd/carbon as well as homogeneous hydrogenation by the Staudinger method. These self-terminated polyamide dendrimers are enzymatically and hydrolytically stable and also exhibit antimicrobial activity. Thus, these nanoscale constructs open avenues for biomedical applications
    corecore