21 research outputs found
Pancreatic Cancer Cell Lines Can Induce Prostaglandin E2 Production from Human Blood Mononuclear Cells
Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. The protumorigenic properties of COX-2 are generally thought to be mediated by its product, PGE2, which is shown to promote tumor spread and growth by multiple mechanisms but most importantly through modulation of the local immune response in the tumor. Pancreatic tumor cells produce various amounts of PGE2, some of them being even deficient in COX enzymes or other PGE2 synthases. Here we describe that, beside pancreatic tumor cells or stromal fibroblasts, human peripheral blood mononuclear cells can also produce PGE2 upon coculture with pancreatic cancer cells. Stimulating of cellular cPLA2 within PBMCs by secreted factors, presumably sPLA2, from tumor cells appeared crucial, while the direct contact between PBMCs and PDACs seemed to be dispensable for this effect. Our data is emphasizing the complex interactions participating in the formation of the tolerogenic immune milieu within pancreatic tumors
A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol
Background: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. Methods: ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. Discussion: This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. Trial registration: ClinicalTrials.gov-ID: NCT02653313, Registration date: Dec. 4th, 2015
Immune System Stimulation by Oncolytic Rodent Protoparvoviruses
Rodent protoparvoviruses (PVs), parvovirus H-1 (H-1PV) in particular, are naturally endowed with oncolytic properties. While being historically described as agents that selectively replicate in and kill cancer cells, recent yet growing evidence demonstrates that these viruses are able to reverse tumor-driven immune suppression through induction of immunogenic tumor cell death, and the establishment of antitumorigenic, proinflammatory milieu within the tumor microenvironment. This review summarizes the most important preclinical proofs of the interplay and the cooperation between PVs and the host immune system. The molecular mechanisms of PV-induced immunostimulation are also discussed. Furthermore, initial encouraging in-human observations from clinical trials and compassionate virus uses are presented, and speak in favor of further H-1PV clinical development as partner drug in combined immunotherapeutic protocols
Immune System Stimulation by Oncolytic Rodent Protoparvoviruses
Rodent protoparvoviruses (PVs), parvovirus H-1 (H-1PV) in particular, are naturally endowed with oncolytic properties. While being historically described as agents that selectively replicate in and kill cancer cells, recent yet growing evidence demonstrates that these viruses are able to reverse tumor-driven immune suppression through induction of immunogenic tumor cell death, and the establishment of antitumorigenic, proinflammatory milieu within the tumor microenvironment. This review summarizes the most important preclinical proofs of the interplay and the cooperation between PVs and the host immune system. The molecular mechanisms of PV-induced immunostimulation are also discussed. Furthermore, initial encouraging in-human observations from clinical trials and compassionate virus uses are presented, and speak in favor of further H-1PV clinical development as partner drug in combined immunotherapeutic protocols
The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics
Cutaneous T-cell lymphoma (CTCL) is a devastating, potentially fatal T-lymphocyte malignancy affecting the skin. Despite all efforts, the etiology of this disease remains unknown. Infectious agents have long been suspected as factors or co-factors in CTCL pathogenesis. This review deals with the panel of bacterial and viral pathogens that have been investigated so far in an attempt to establish a potential link between infection/carriage and CTCL development. A special focus is given to a recently discovered human protoparvovirus, namely the cutavirus (CutaV), which has emerged as a plausible CTCL etiological agent. Available evidence in support of this hypothesis as well as alternative interpretations and uncertainties raised by some conflicting data are discussed. The complexity and multifacetedness of the Parvoviridae family of viruses are illustrated by presenting another protoparvovirus, the rat H-1 parvovirus (H-1PV). H-1PV belongs to the same genus as the CutaV but carries considerable potential for therapeutic applications in cutaneous lymphoma
Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study
International audienceCancer cells utilize multiple mechanisms to evade and suppress anticancer immune responses creating a "cold" immunosuppressive tumor microenvironment. Oncolytic virotherapy is emerging as a promising approach to revert tumor immunosuppression and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death and thereby eliciting robust anticancer immune responses. In this review, we summarize information about OV-mediated immune conversion of the tumormicroenvironment. As a case study we focus on the rodent protoparvovirus H-1PV and its dual role as an oncolytic and immunemodulatory agent. Potential strategies to improve H-1PV anticancer efficacy are also discussed
Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity
Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood–brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing