15 research outputs found

    Comparative analysis of xanafide cytotoxicity in breast cancer cell lines

    Get PDF
    Xanafide, a DNA-intercalating agent and topoisomerase II inhibitor, has previously demonstrated comparable cytotoxicity to the parent drug amonafide (NSC 308847). The current study was conducted to investigate further the anti-proliferative effects of xanafide in human breast cancer cell lines, in vitro and in vivo. The in vitro activity of xanafide against MCF-7, MDA-MB-231, SKBR-3 and T47D cell lines was compared to that of paclitaxel, docetaxel, gemcitabine, vinorelbine and doxorubicin. In MCF-7, xanafide demonstrated comparable total growth inhibition (TGI) concentrations to the taxanes and lower TGI values than gemcitabine, vinorelbine and doxorubicin. MCF-7 (oestrogen receptor (ER)+/p53 wild-type) was the most sensitive cell line to xanafide. MDA-MB-231 and SKBR-3 exhibited similar sensitivity to xanafide. T47 D (ER+/p53 mutated), showed no response to this agent. The in vivo activity of xanafide was further compared to that of docetaxel in MCF-7 and MDA-MB-231 cell lines using the hollow fibre assay. Xanafide was slightly more potent than docetaxel, at its highest dose in MCF-7 cell line, whereas docetaxel was more effective than xanafide in MDA-MB-231 cell line. Our results show that there is no relationship between sensitivity of these cell lines to xanafide and cellular levels of both isoforms of topoisomerase II and suggest that ER and p53 status and their crosstalk may predict the responsiveness or resistance of breast cancer patients to xanafide

    ESR1 Is Co-Expressed with Closely Adjacent Uncharacterised Genes Spanning a Breast Cancer Susceptibility Locus at 6q25.1

    Get PDF
    Approximately 80% of human breast carcinomas present as oestrogen receptor α-positive (ER+ve) disease, and ER status is a critical factor in treatment decision-making. Recently, single nucleotide polymorphisms (SNPs) in the region immediately upstream of the ER gene (ESR1) on 6q25.1 have been associated with breast cancer risk. Our investigation of factors associated with the level of expression of ESR1 in ER+ve tumours has revealed unexpected associations between genes in this region and ESR1 expression that are important to consider in studies of the genetic causes of breast cancer risk. RNA from tumour biopsies taken from 104 postmenopausal women before and after 2 weeks treatment with an aromatase (oestrogen synthase) inhibitor was analyzed on Illumina 48K microarrays. Multiple-testing corrected Spearman correlation revealed that three previously uncharacterized open reading frames (ORFs) located immediately upstream of ESR1, C6ORF96, C6ORF97, and C6ORF211 were highly correlated with ESR1 (Rs = 0.67, 0.64, and 0.55 respectively, FDR<1×10−7). Publicly available datasets confirmed this relationship in other groups of ER+ve tumours. DNA copy number changes did not account for the correlations. The correlations were maintained in cultured cells. An ERα antagonist did not affect the ORFs' expression or their correlation with ESR1, suggesting their transcriptional co-activation is not directly mediated by ERα. siRNA inhibition of C6ORF211 suppressed proliferation in MCF7 cells, and C6ORF211 positively correlated with a proliferation metagene in tumours. In contrast, C6ORF97 expression correlated negatively with the metagene and predicted for improved disease-free survival in a tamoxifen-treated published dataset, independently of ESR1. Our observations suggest that some of the biological effects previously attributed to ER could be mediated and/or modified by these co-expressed genes. The co-expression and function of these genes may be important influences on the recently identified relationship between SNPs in this region and breast cancer risk

    Interaction between estrogen receptor alpha, ionizing radiation and (anti-) estrogens in breast cancer cells.

    No full text
    PURPOSE: Estrogen receptor alpha (ERalpha) plays a major role in breast cancer development. It acts as ligand-inducible transcription factor which determines growth, survival and differentiation of breast cancer cells. The aim of this study is to evaluate the potential interference between radiotherapy and estrogen receptor responsiveness. Materials and methods. The effect of ionizing radiation was assessed on the estrogen receptor alpha status, growth (proliferation and apoptosis) and sensitivity of MCF-7 breast cancer cells to estrogenic (17beta-estradiol (E2)), selective estrogen receptor modulator (SERM) and anti-estrogenic compounds. Results. We have observed a ligand-independent decrease in ERalpha expression after radiation, resulting from a specific reduction in mRNA level and protein synthesis. This ERalpha disappearance occurred 72 h post-irradiation at 8 Gy and decreased the transcriptional activity in ERalpha of these cells. On the other hand, E2 impedes the growth inhibitory effects (essentially on proliferation) of ionizing radiation in MCF-7 cells, which potentially decreases radiosensitivity of these cells. This effect was totally blocked by SERM and anti-estrogenic treatments. Moreover, this growth effect of concurrent anti-estrogenic drugs and ionizing radiation appeared to be strongly synergistic. CONCLUSIONS: This study may increase general comprehension of ERalpha modulation by radiotherapy and improve adjuvant therapeutic approaches based on co-administration of radiation and endocrine therapy.Evaluation StudiesJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore