33 research outputs found

    Time-dependent cyclic behavior of reinforced concretebridge columns under chlorides-induced corrosion andrebars buckling

    Get PDF
    This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns

    Effectiveness, safety, and tolerability of delayed dexamethasone, rituximab, and cyclophosphamide as first-line treatment in patients with Waldenström macroglobulinemia: data from the Sicilian Myeloma Network

    Get PDF
    BackgroundWaldenström macroglobulinemia (WM) is a rare and indolent B-cell lymphoproliferative disorder with greater incidence in elderly patients where a precise algorithm of initial therapy is still not clear. Immunochemotherapy regimen consisting of dexamethasone, rituximab, and oral cyclophosphamide (DRC) is considered a suitable first-line treatment because of its safety, efficacy, and manageability.Patients and methodsWe retrospectively describe the results of 36 consecutive treatment-naïve patients with WM who were treated from June 2013 until June 2021 with the DRC regimen every 4 weeks instead of 3 weeks, for six cycles. The median age was 69 years (range, 42–85 years), with one-third being older than 75 years. Most patients had features of advanced disease, with nearly 60% being high risk. Median IgM level prior to treatment initiation was 2.9 g/dL.ResultsOverall response rate was 80% after a median time of two cycles, with 67% of patients achieving at least partial response. After a median follow-up of 59 months, the median overall survival (OS) was not reached and the median time to next treatment (TTNT) was 48 months (95% CI 25–87 months). Approximately 70% of the evaluable study population had a 3-year survival without additional treatment, while 75% had a 3-year OS rate. The treatment was well-tolerated with only two patients (6%) recorded to have grade 3 pneumonia and no grade 3 hematological toxicity maybe due to the regular use of growth factors for red and white blood cells. Baseline albumin level and achievement of at least minimal or partial response had a significant impact on TTNT, while baseline hemoglobin and IgA level affected outcome in terms of OS (p < 0.05).ConclusionThis is the first real-life experience describing the use of the DRC regimen in treatment-naive patients with WM with administration of therapy every 4 weeks instead of 3 weeks showing apparent comparable efficacy, along with good tolerability and safety, especially in terms of hematological toxicity, independently from comorbidity burden

    IMPA versus Cloud Analysis and IDA: Different Methods to Evaluate Structural Seismic Fragility

    No full text
    Well-known methods for seismic performance assessment, such as incremental dynamic analysis (IDA), multi-stripes analysis (MSA) and the cloud method, involve nonlinear response time-history analyses to characterize the relationship between the chosen damage measure versus intensity measure. Over the past two decades, many authors have proposed simplified procedures or nonlinear static approaches to develop fragility. In these procedures, the capacity of the system is evaluated by nonlinear static procedures (i.e., the capacity spectrum method (CSM), the N2 method, modal pushover analysis (MPA)) and the demand is derived by response spectra. In addition to the familiar ones, incremental modal pushover analysis (IMPA) is a novel nonlinear static procedure proposed in recent years, and it is used in this research to present an IM-based fragility estimation. The accuracy and effectiveness of different methods to assess vulnerability are investigated by comparing fragility curves derived by MPA-based cloud analysis, IMPA and cloud analysis against IDA. The comparison gives valuable insights on the influence of scaling on different sets of records; however, a more extended validation is needed to confirm the obtained results and draw more general conclusions. Results arise from two relatively small bins of record motions differing by ranges of Joyner-Boore distance and scattered in a range of magnitude are presented

    Chinese High Rise Reinforced Concrete Building Retrofitted with CLT Panels

    No full text
    Cross laminated timber (CLT) panels have been gaining increasing attention in the construction field as a diaphragm in mid- to high-rise building projects. Moreover, in the last few years, due to their seismic performances, low environmental impact, ease of construction, etc., many research studies have been conducted about their use as infill walls in hybrid construction solutions. With more than a half of the megacities in the world located in seismic regions, there is an urgent need of new retrofitting methods that can improve the seismic behavior of the buildings, upgrading, at the same time, the architectural aspects while minimizing the environmental impact and costs associated with the common retrofit solutions. In this work, the seismic, energetic, and architectural rehabilitation of tall reinforced concrete (RC) buildings using CLT panels are investigated. An existing 110 m tall RC frame building located in Huizhou (China) was chosen as a case study. The first objective was to investigate the performances of the building through the non-linear static analysis (push-over analysis) used to define structural weaknesses with respect to earthquake actions. The architectural solution proposed for the building is the result of the combination between structural and architectonic needs: internal spaces and existing facades were re-designed in order to improve not only the seismic performances but also energy efficiency, quality of the air, natural lighting, etc. A full explanation of the FEM modeling of the cross laminated timber panels is reported in the following. Non-linear FEM models of connections and different wall configurations were validated through a comparison with available lab tests, and finally, a real application on the existing 3D building was discussed
    corecore