10 research outputs found

    Resveratrol and Immune Cells: A Link to Improve Human Health

    No full text
    The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health

    Spirulina promotes macrophages aggregation in zebrafish (Danio rerio) liver

    No full text
    The immune system of teleosts offers many ideas to deepen the immune mechanisms and cells in general. The use of zebrafish as an experimental model is increased in recent years, thanks to its genetic and anatomical characteristics. It is known that several natural compounds exert an action on the immune system, boosting it. Spirulina, a non-toxic blue-green alga, has been declared a superfood for its peculiar biological activities. In this study, we test the immunostimulant effect of spirulina on zebrafish liver macrophages by immunohistochemical analysis using optical and confocal microscopy. Our results have shown an increase in the number of macrophages after feeding with spirulina, furthermore, this natural ‘superfood’ can induce macrophages aggregation. These data not only provide information on the possible effect of this alga as a complementary feed on the immune cells of teleost, but also improve the knowledge of the immune mechanisms of vertebrates

    Internal Defense System of <i>Mytilus galloprovincialis</i> (Lamarck, 1819): Ecological Role of Hemocytes as Biomarkers for Thiacloprid and Benzo[a]Pyrene Pollution

    No full text
    The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem

    Histological and Chemical Analysis of Heavy Metals in Kidney and Gills of <i>Boops boops</i>: Melanomacrophages Centers and Rodlet Cells as Environmental Biomarkers

    No full text
    Industrialization has resulted in a massive increase in garbage output, which is frequently discharged or stored in waterways like rivers and seas. Due to their toxicity, durability, bioaccumulation, and biomagnification, heavy metals (such as mercury, cadmium, and lead) have been identified as strong biological poisons. Their presence in the aquatic environment has the potential to affect water quality parameters and aquatic life in general. Teleosts’ histopathology provides a sensitive indicator of pollutant-induced stress, because their organs have a central role in the transformation of different active chemical compounds in the aquatic environment. In particular, the gills, kidneys, and liver are placed at the center of toxicological studies. The purpose of this study is to examine the morphological changes caused by heavy metals in the kidney and gills of Boops boops, with a focus on melanomacrophages centers (MMCs) and rodlet cells (RCs) as environmental biomarkers, using histological and histochemical stainings (hematoxylin/eosin, Van Gieson trichrome, Periodic Acid Schiff reaction, and Alcian Blue/PAS 2.5), and immunoperoxidase methods. Our findings show an increase of MMCs and RCs linked to higher exposure to heavy metals, confirming the role of these aggregates and cells as reliable biomarkers of potential aquatic environmental changes reflected in fish fauna. The cytological study of RCs and MMCs could be important in gaining a better understanding of the complicated immune systems of teleosts

    Immune System and Psychological State of Pregnant Women during COVID-19 Pandemic: Are Micronutrients Able to Support Pregnancy?

    No full text
    The immune system is highly dynamic and susceptible to many alterations throughout pregnancy. Since December 2019, a pandemic caused by coronavirus disease 19 (COVID-19) has swept the globe. To contain the spread of COVID-19, immediate measures such as quarantine and isolation were implemented. These containment measures have contributed to exacerbate situations of anxiety and stress, especially in pregnant women, who are already particularly anxious about their condition. Alterations in the psychological state of pregnant women are related to alterations in the immune system, which is more vulnerable under stress. COVID-19 could therefore find fertile soil in these individuals and risk more severe forms. Normally a controlled dietary regimen is followed during pregnancy, but the use of particular vitamins and micronutrients can help counteract depressive-anxiety states and stress, can improve the immune system, and provide an additional weapon in the defense against COVID-19 to bring the pregnancy to fruition. This review aims to gather data on the impact of COVID-19 on the immune system and psychological condition of pregnant women and to assess whether some micronutrients can improve their psychophysical symptoms

    Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful?

    No full text
    Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%&ndash;3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms

    Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts

    No full text
    Dendritic cells (DCs) are antigen-presenting cells (APCs) that regulate the beginning of adaptive immune responses. The mechanisms of tolerance to antigens moving through the digestive tract are known to be regulated by intestinal DCs. Agnatha and Gnathostoma are descendants of a common ancestor. The Ostracoderms gave rise to Cyclostomes, whereas the Placoderms gave rise to Chondrichthyes. Sarcopterygii and Actinopterygii are two evolutionary lines of bony fishes. Brachiopterygii and Neopterygii descend from the Actinopterygii. From Neopterygii, Holostei and Teleostei evolved. Using immunohistochemistry with TLR-2, Langerin/CD207, and MHC II, this study aimed to characterize intestinal DCs, from myxines to teleosts. The findings reveal that DCs are positive for the antibodies tested, highlighting the presence of DCs and DC-like cells phylogenetically from myxines, for the first time, to teleosts. These findings may aid in improving the level of knowledge about the immune system’s evolution and these sentinel cells, which are crucial to the body’s defense

    Detecting Intestinal Goblet Cells of the Broadgilled Hagfish Eptatretus cirrhatus (Forster, 1801): A Confocal Microscopy Evaluation

    No full text
    The fish intestine operates as a complicated interface between the organism and the environment, providing biological and mechanical protections as a result of a viscous layer of mucus released by goblet cells, which serves as a barrier against bacteria, viruses, and other pathogens, and contributes to the functions of the immune system. Therefore, goblet cells have a role in preserving the health of the body by secreting mucus and acting as sentinels. The ancient jawless fish broadgilled hagfish (Eptatretus cirrhatus, Forster, 1801) has a very basic digestive system because it lacks a stomach. By examining the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1, this study intends to provide insight into the potential immune system contributions arranged by the gut goblet cells of broadgilled hagfish. Our results characterize intestinal goblet cells of broadgilled hagfish, for the first time, with the former antibodies, suggesting the hypothesis of conservation of the roles played by these cells also in primitive vertebrates. Moreover, this study deepens the knowledge about the still little-known immune system of hagfish

    Confocal Identification of Immune Molecules in Skin Club Cells of Zebrafish (<i>Danio rerio</i>, Hamilton 1882) and Their Possible Role in Immunity

    No full text
    The immune system of a fish has cellular and molecular defense mechanisms that are substantially retained throughout the evolution of vertebrates. The innate immune system provides biological processes, such as phagocytosis and mechanical barriers, to implement an efficient defensive response after exposure to chemical or biological contaminants, pollutants, and contact with parasites, germs, and pathogens. Club cells (CCs) are widespread in the skin of Ostariophysi. After a predator attack or exposure to toxins and parasites, these cells can produce alarming substances. Given their effectiveness against viruses, parasites, and common skin lesions, recent studies have suggested that CCs are a component of the immune system. This study aims to immunohistochemically characterize the CCs for the first time in the skin of zebrafish, using mitogen-activated protein kinase (MAPK) p38, Toll-like receptor (TLR)2, Piscidin1, and inducible nitric oxide synthase (iNOS) peptides involved in the function of all types of vertebrate immune cells. According to our analysis, the intermediate layer of the epidermis exhibited rounded, oval, and elongated CCs, with central acidophilic cytoplasm and a spherical basophilic nucleus, that are positive to the antibodies tested. Our results may confirm that CCs could be involved in the immune function, increasing our knowledge of the immune system of teleosts

    Expression of Antimicrobic Peptide Piscidin1 in Gills Mast Cells of Giant Mudskipper Periophthalmodon schlosseri (Pallas, 1770)

    No full text
    The amphibious teleost Giant mudskipper (Periophthalmodon schlosseri, Pallas 1770) inhabit muddy plains and Asian mangrove forests. It spends more than 90% of its life outside of the water, using its skin, gills, and buccal-pharyngeal cavity mucosa to breathe in oxygen from the surrounding air. All vertebrates have been found to have mast cells (MCs), which are part of the innate immune system. These cells are mostly found in the mucous membranes of the organs that come in contact with the outside environment. According to their morphology, MCs have distinctive cytoplasmic granules that are released during the degranulation process. Additionally, these cells have antimicrobial peptides (AMPs) that fight a variety of infections. Piscidins, hepcidins, defensins, cathelicidins, and histonic peptides are examples of fish AMPs. Confocal microscopy was used in this study to assess Piscidin1 expression in Giant Mudskipper branchial MCs. Our results demonstrated the presence of MCs in the gills is highly positive for Piscidin1. Additionally, colocalized MCs labeled with TLR2/5-HT and Piscidin1/5-HT supported our data. The expression of Piscidin1 in giant mudskipper MCs highlights the involvement of this peptide in the orchestration of teleost immunity, advancing the knowledge of the defense system of this fish
    corecore