6 research outputs found

    Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial

    Get PDF
    Background: Infants are a key target population for new tuberculosis vaccines. We assessed the safety and immunogenicity of the live-attenuated Mycobacterium tuberculosis vaccine candidate MTBVAC in adults and infants in a region where transmission of tuberculosis is very high. Methods: We did a randomised, double-blind, BCG-controlled, dose-escalation trial at the South African Tuberculosis Vaccine Initiative site near Cape Town, South Africa. Healthy adult community volunteers who were aged 18–50 years, had received BCG vaccination as infants, were HIV negative, had negative interferon-¿ release assay (IGRA) results, and had no personal history of tuberculosis or current household contact with someone with tuberculosis were enrolled in a safety cohort. Infants born to HIV-negative women with no personal history of tuberculosis or current household contact with a person with tuberculosis and who were 96 h old or younger, generally healthy, and had not yet received routine BCG vaccination were enrolled in a separate infant cohort. Eligible adults were randomly assigned (1:1) to receive either BCG Vaccine SSI (5 × 105 colony forming units [CFU] of Danish strain 1331 in 0·1 mL diluent) or MTBVAC (5 × 105 CFU in 0·1 mL) intradermally in the deltoid region of the arm. After favourable review of 28-day reactogenicity and safety data in the adult cohort, infants were randomly assigned (1:3) to receive either BCG Vaccine SSI (2·5 × 105 CFU in 0·05 mL diluent) or MTBVAC in three sequential cohorts of increasing MTBVAC dose (2·5 × 103 CFU, 2·5 × 104 CFU, and 2·5 × 105 CFU in 0·05 mL) intradermally in the deltoid region of the arm. QuantiFERON-TB Gold In-Tube IGRA was done on days 180 and 360. For both randomisations, a pre-prepared block randomisation schedule was used. Participants (and their parents or guardians in the case of infant participants), investigators, and other clinical and laboratory staff were masked to intervention allocation. The primary outcomes, which were all measured in the infant cohort, were solicited and unsolicited local adverse events and serious adverse events until day 360; non-serious systemic adverse events until day 28 and vaccine-specific CD4 and CD8 T-cell responses on days 7, 28, 70, 180, and 360. Secondary outcomes measured in adults were local injection-site and systemic reactions and haematology and biochemistry at study day 7 and 28. Safety analyses and immunogenicity analyses were done in all participants who received a dose of vaccine. This trial is registered with ClinicalTrials.gov, number NCT02729571. Findings: Between Sept 29, 2015, and Nov 16, 2015, 62 adults were screened and 18 were enrolled and randomly assigned, nine each to the BCG and MTBVAC groups. Between Feb 12, 2016, and Sept 21, 2016, 36 infants were randomly assigned—eight to the BCG group, nine to the 2·5 × 103 CFU MTBVAC group, nine to the 2·5 × 104 CFU group, and ten to the 2·5 × 105 CFU group. Mild injection-site reactions occurred only in infants in the BCG and the 2·5 × 105 CFU MTBVAC group, with no evidence of local or regional injection-site complications. Systemic adverse events were evenly distributed across BCG and MTBVAC dose groups, and were mostly mild in severity. Eight serious adverse events were reported in seven vaccine recipients (one adult MTBVAC recipient, one infant BCG recipient, one infant in the 2·5 × 103 CFU MTBVAC group, two in the 2·5 × 104 CFU MTBVAC group, and two in the 2·5 × 105 CFU MTBVAC group), including one infant in the 2·5 × 103 CFU MTBVAC group treated for unconfirmed tuberculosis and one in the 2·5 × 105 CFU MTBVAC group treated for unlikely tuberculosis. One infant died as a result of possible viral pneumonia. Vaccination with all MTBVAC doses induced durable antigen-specific T-helper-1 cytokine-expressing CD4 cell responses in infants that peaked 70 days after vaccination and were detectable 360 days after vaccination. For the highest MTBVAC dose (ie, 2·5 × 105 CFU), these responses exceeded responses induced by an equivalent dose of the BCG vaccine up to 360 days after vaccination. Dose-related IGRA conversion was noted in three (38%) of eight infants in the 2·5 × 103 CFU MTBVAC group, six (75%) of eight in the 2·5 × 104 CFU MTBVAC group, and seven (78%) of nine in the 2·5 × 105 CFU MTBVAC group at day 180, compared with none of seven infants in the BCG group. By day 360, IGRA reversion had occurred in all three infants (100%) in the 2·5 × 103 CFU MTBVAC group, four (67%) of the six in the 2·5 × 104 CFU MTBVAC group, and three (43%) of the seven in the 2·5 × 105 CFU MTBVAC group. Interpretation: MTBVAC had acceptable reactogenicity, and induced a durable CD4 cell response in infants. The evidence of immunogenicity supports progression of MTBVAC into larger safety and efficacy trials, but also confounds interpretation of tests for M tuberculosis infection, highlighting the need for stringent endpoint definition. Funding: Norwegian Agency for Development Cooperation, TuBerculosis Vaccine Initiative, UK Department for International Development, and Biofabri

    Sample adequacy controls for infectious disease diagnosis by oral swabbing.

    No full text
    Oral swabs are emerging as a non-invasive sample type for diagnosing infectious diseases including Ebola, tuberculosis (TB), and COVID-19. To assure proper sample collection, sample adequacy controls (SACs) are needed that detect substances indicative of samples collected within the oral cavity. This study evaluated two candidate SACs for this purpose. One detected representative oral microbiota (Streptococcus species DNA) and the other, human cells (human mitochondrial DNA, mtDNA). Quantitative PCR (qPCR) assays for the two target cell types were applied to buccal swabs (representing samples collected within the oral cavity) and hand swabs (representing improperly collected samples) obtained from 51 healthy U.S. volunteers. Quantification cycle (Cq) cutoffs that maximized Youden's index were established for each assay. The streptococcal target at a Cq cutoff of ≤34.9 had 99.0% sensitivity and specificity for oral swab samples, whereas human mtDNA perfectly distinguished between hand and mouth swabs with a Cq cutoff of 31.3. The human mtDNA test was then applied to buccal, tongue, and gum swabs that had previously been collected from TB patients and controls in South Africa, along with "air swabs" collected as negative controls (total N = 292 swabs from 71 subjects). Of these swabs, 287/292 (98%) exhibited the expected Cq values. In a paired analysis the three oral sites yielded indistinguishable amounts of human mtDNA, however PurFlockTM swabs collected slightly more human mtDNA than did OmniSwabsTM (p = 0.012). The results indicate that quantification of human mtDNA cannot distinguish swabs collected from different sites within the mouth. However, it can reliably distinguish oral swabs from swabs that were not used orally, which makes it a useful SAC for oral swab-based diagnosis

    Regional changes in tuberculosis disease burden among adolescents in South Africa (2005-2015).

    No full text
    BACKGROUND:Adolescents in the Western Cape Province of South Africa had high force of Mycobacterium tuberculosis (MTB) infection (14% per annum) and high TB incidence (710 per 100,000 person-years) in 2005. We describe subsequent temporal changes in adolescent TB disease notification rates for the decade 2005-2015. METHOD:We conducted an analysis of patient-level adolescent (age 10-19 years) TB disease data, obtained from an electronic TB register in the Breede Valley sub-district, Western Cape Province, South Africa, for 2005-2015. Numerators were annual TB notifications (HIV-related and HIV-unrelated); denominators were mid-year population estimates. Period averages of TB rates were obtained using time series modeling. Temporal trends in TB rates were explored using the Mann-Kendall test. FINDINGS:The average adolescent TB disease notification rate was 477 per 100,000 for all TB patients (all-TB) and 361 per 100,000 for microbiologically-confirmed patients. The adolescent all-TB rate declined by 45% from 662 to 361 per 100,000 and the microbiologically-confirmed TB rate by 38% from 492 to 305 per 100,000 between 2005-2015, driven mainly by rapid decreases for the period 2005-2009. There was a statistically significant negative temporal trend in both all-TB (per 100,000) (declined by 48%; from 662 to 343; p = 0·028) and microbiologically confirmed TB (per 100,000) (declined by 49%; from 492 to 252; p = 0·027) for 2005-2009, which was not observed for the period 2009-2015 (rose 5%; from 343 to 361; p = 0·764 and rose 21%; from 252 to 305; p = 1·000, respectively). INTERPRETATION:We observed an encouraging fall in adolescent TB disease rates between 2005-2009 with a subsequent plateau during 2010-2015, suggesting that additional interventions are needed to sustain initial advances in TB control

    Preferences of healthcare workers using tongue swabs for tuberculosis diagnosis during COVID-19.

    No full text
    Healthcare workers (HCWs) who come into contact with tuberculosis (TB) patients are at elevated risk of TB infection and disease. The collection and handling of sputum samples for TB diagnosis poses exposure risks to HCWs, particularly in settings where aerosol containment is limited. An alternative sample collection method, tongue swabbing, was designed to help mitigate this risk, and is under evaluation in multiple settings. This study assessed risk perceptions among South African HCWs who used tongue swabbing in TB diagnostic research during the COVID-19 pandemic. We characterized their context-specific preferences as well as the facilitators and barriers of tongue swab use in clinical and community settings. Participants (n = 18) were HCWs with experience using experimental tongue swabbing methods at the South African Tuberculosis Vaccine Initiative (SATVI). We used key informant semi-structured interviews to assess attitudes toward two tongue swab strategies: Provider-collected swabbing (PS) and supervised self-swabbing (SSS). Responses from these interviews were analyzed by rapid qualitative analysis and thematic analysis methods. Facilitators included aversion to sputum (PS and SSS), perceived safety of the method (SSS), and educational resources to train patients (SSS). Barriers included cultural stigmas, as well as personal security and control of their work environment when collecting swabs in community settings. COVID-19 risk perception was a significant barrier to the PS method. Motivators for HCW use of tongue swabbing differed substantially by use case, and whether the HCW has the authority and agency to implement safety precautions in specific settings. These findings point to a need for contextually specific educational resources to enhance safety of and adherence to the SSS collection method
    corecore