49 research outputs found

    Disruption of Amino Acid Homeostasis by Novel ASCT2 Inhibitors Involves Multiple Targets

    Get PDF
    The glutamine transporter ASCT2 (SLC1A5) is actively investigated as an oncological target, but the field lacks efficient ASCT2 inhibitors. A new group of ASCT2 inhibitors, 2-amino-4-bis(aryloxybenzyl)aminobutanoic acids (AABA), were developed recently and shown to suppress tumor growth in preclinical in vivo models. To test its specificity, we deleted ASCT2 in two human cancer cell lines. Surprisingly, growth of parental and ASCT2-knockout cells was equally sensitive to AABA compounds. AABA compounds inhibited glutamine transport in cells lacking ASCT2, but not in parental cells. Deletion of ASCT2 and amino acid (AA) depletion induced expression of SNAT2 (SLC38A2), the activity of which was inhibited by AABA compounds. They also potently inhibited isoleucine uptake via LAT1 (SLC7A5), a transporter that is upregulated in cancer cells together with ASCT2. Inhibition of SNAT2 and LAT1 was confirmed by recombinant expression in Xenopus laevis oocytes. The reported reduction of tumor growth in pre-clinical models may be explained by a significant disruption of AA homeostasis.Work in the laboratory of the authors was funded by Australian Research Council Grant: DP180101702 and National Health and Medical Research Council Grant: 1105857

    Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B0AT1) by transcriptional and epigenetic networks

    No full text
    Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using, as an example, the Slc6a19 gene, encoding the neutral amino acid transporter B0AT1, we studied regulation of the gene by transcription factors and epigenetic factors in the intestine. To investigate this question we used a fractionation method to separate mature enterocytes from crypt cells and analysed gene expression. Transcription factors HNF1a and HNF4a activate transcription of the Slc6a19 gene in villus enterocytes, while high levels of SOX9 repress expression in the crypts. CpG dinucleotides in the proximal promoter were highly methylated in the crypt and fully de-methylated in the villus. Furthermore, histone modification H3K27Ac, indicating an active promo! ter, was prevalent in villus cells but barely detectable in crypt cells. The results suggest that Slc6a19 expression in the intestine is regulated at three different levels involving promoter methylation, histone modification and opposing transcription factors

    Expression of aquaporins in Xenopus laevis oocytes and glial cells as detected by diffusion-weighted 1H NMR spectroscopy and photometric swelling assay

    Get PDF
    AbstractExpression of aquaporins (AQP) and water permeability were studied in Xenopus laevis oocytes and immobilized glial cells by a pulsed-field gradient spin echo NMR technique and a photometric swelling assay. Oocytes injected with poly(A) RNA from C6-BU-1 cells showed increased swelling behavior under hypoosmotic stress due to expressed water channels as compared to control oocytes. The swelling could be reversibly inhibited by HgCl2. Furthermore, the intracellular relaxation time and the apparent intracellular diffusion coefficient of water in oocytes were determined by diffusion-weighted 1H NMR experiments to be T2=36 ms and Dapp,intra=0.18×10−3 mm2/s. In immobilized C6 and F98 cells the mean exchange time of intracellular water was found to be 51 ms which increased to 75 ms upon chronic treatment (4 days) in hypertonic medium. Additional hybrid depletion experiments with antisense oligonucleotides directed against AQP1 were performed on oocytes and C6 cells. Moreover, different water channel subtypes of glial cells were assessed by a reverse transcriptase polymerase chain reaction assay. With this, the mRNA encoding AQP1 could be detected in primary cultures and glial cell lines, whereas AQP4 mRNA was found in astroglia-rich primary cultures, but not in F98 and C6 cells. Our results show that water permeability in glial cells is mainly mediated by water channels which play an important role in the regulation of water flow in brain under normal and pathological conditions

    Impaired nutrient signaling and body weight control in a Naâș neutral amino acid cotransporter (Slc6a19)-deficient mouse

    Get PDF
    Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter BᎌAT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Naâș -dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking BᎌAT1 showed a reduced body weight. When adapted to a standard 20% protein diet, BᎌAT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.This work was supported by National Health and Medical Research Council Grant 525415, Australian Research Council Grant DP0877897, University of Sydney Bridging Grant RIMS2009-02579), and by an anonymous foundatio

    ASCT2 (SLC1A5)-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production

    Get PDF
    SLC1A5 (solute carrier family 1, member 5) is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5's primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.This work was supported by Australian National Health and Medical Research Council Grant 1105857 (SB) and Career Development Fellowship 1035858 (AE

    Identification of novel inhibitors of the amino acid transporter B(0) AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes

    Get PDF
    BACKGROUND AND PURPOSE The neutral amino acid transporter B(0) AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B(0) AT1 mediates the Na(+) -dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B(0) AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B(0) AT1. EXPERIMENTAL APPROACH A CHO-based cell line was generated, stably expressing collectrin and B(0) AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B(0) AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B(0) AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. KEY RESULTS We characterized a series of novel inhibitors of the B(0) AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 ΌM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. CONCLUSION AND IMPLICATIONS The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.The work reported here was supported by a sponsored research contract with SanoïŹ (Germany)

    Mice lacking neutral amino acid transporter B⁰AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

    No full text
    OBJECTIVE: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of ÎČ-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B⁰AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS: Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B⁰AT1 (Slc6a19). RESULTS: Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS: Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B⁰AT1 could be a suitable target to treat type 2 diabetes.This work was supported by a sponsored research agreement with Sanofi-Aventis, Germany
    corecore