634 research outputs found
Heat Transport in Mesoscopic Systems
Phonon heat transport in mesoscopic systems is investigated using methods
analogous to the Landauer description of electrical conductance. A "universal
heat conductance" expression that depends on the properties of the conducting
pathway only through the mode cutoff frequencies is derived. Corrections due to
reflections at the junction between the thermal body and the conducting bridge
are found to be small except at very low temperatures where only the lowest few
bridge modes are excited. Various non-equilibrium phonon distributions are
studied: a narrow band distribution leads to clear steps in the cooling curve,
analogous to the quantized resistance values in narrow wires, but a thermal
distribution is too broad to show such features.Comment: To be published in Superlattices and Microstructures, special issue
in honor of Rolf Landauer, March 198
A microfluidic technique for generating monodisperse submicron-sized drops
International audienceWe present a route for producing monodisperse micro and nanodrops that is based on a liquid-gas phase transition occurring within a microfluidic device. A gas which is soluble in water is mixed with an insoluble one and injected into an aqueous surfactant solution, using a microfluidic device that produces monodisperse bubbles. As the soluble gas diffuses out of the bubbles, they shrink and the remaining insoluble gas condenses into drops. Their radius can be tuned over a wide range by changing the initial gas mixing ratio
Low-temperature heat transfer in nanowires
The new regime of low-temperature heat transfer in suspended nanowires is
predicted. It takes place when (i) only ``acoustic'' phonon modes of the wire
are thermally populated and (ii) phonons are subject to the effective elastic
scattering. Qualitatively, the main peculiarities of heat transfer originate
due to appearance of the flexural modes with high density of states in the wire
phonon spectrum. They give rise to the temperature dependence of the
wire thermal conductance. The experimental situations where the new regime is
likely to be detected are discussed.Comment: RevTex file, 1 PS figur
Effect of phonon scattering by surface roughness on the universal thermal conductance
The effect of phonon scattering by surface roughness on the thermal
conductance in mesoscopic systems at low temperatures is calculated using full
elasticity theory. The low frequency behavior of the scattering shows novel
power law dependences arising from the unusual properties of the elastic modes.
This leads to new predictions for the low temperature depression of the thermal
conductance below the ideal universal value. Comparison with the data of Schwab
et al. [Nature 404, 974 (2000)] suggests that surface roughness on a scale of
the width of the thermal pathway is important in the experiment.Comment: 6 pages, 3 figure
Bloch-Wall Phase Transition in the Spherical Model
The temperature-induced second-order phase transition from Bloch to linear
(Ising-like) domain walls in uniaxial ferromagnets is investigated for the
model of D-component classical spin vectors in the limit D \to \infty. This
exactly soluble model is equivalent to the standard spherical model in the
homogeneous case, but deviates from it and is free from unphysical behavior in
a general inhomogeneous situation. It is shown that the thermal fluctuations of
the transverse magnetization in the wall (the Bloch-wall order parameter)
result in the diminishing of the wall transition temperature T_B in comparison
to its mean-field value, thus favouring the existence of linear walls. For
finite values of T_B an additional anisotropy in the basis plane x,y is
required; in purely uniaxial ferromagnets a domain wall behaves like a
2-dimensional system with a continuous spin symmetry and does not order into
the Bloch one.Comment: 16 pages, 2 figure
Gentle Perturbations of the Free Bose Gas I
It is demonstrated that the thermal structure of the noncritical free Bose
Gas is completely described by certain periodic generalized Gaussian stochastic
process or equivalently by certain periodic generalized Gaussian random field.
Elementary properties of this Gaussian stochastic thermal structure have been
established. Gentle perturbations of several types of the free thermal
stochastic structure are studied. In particular new models of non-Gaussian
thermal structures have been constructed and a new functional integral
representation of the corresponding euclidean-time Green functions have been
obtained rigorously.Comment: 51 pages, LaTeX fil
Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches
Heavy vector-like quarks coupled to a scalar will induce a coupling of
this scalar to gluons and possibly (if electrically charged) photons. The decay
of the heavy quark into , with being a Standard Model quark, provides,
if kinematically allowed, new channels for heavy quark searches. Inspired by
naturalness considerations, we consider the case of a vector-like partner of
the top quark. For illustration, we show that a singlet partner can be searched
for at the 13TeV LHC through its decay into a scalar resonance in the
final states, especially if the diphoton branching ratio of
the scalar is further enhanced by the contribution of non coloured
particles. We then show that conventional heavy quark searches are also
sensitive to this new decay mode, when decays hadronically, by slightly
tightening the current selection cuts. Finally, we comment about the
possibility of disentangling, by scrutinising appropriate kinematic
distributions, heavy quark decays to from other standard decay modes.Comment: 8 pages, 3 figures and 1 table; v3: typos fixed. Matches published
versio
Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors
The magnetic behavior of insulating doped diluted magnetic semiconductors
(DMS) is characterized by the interaction of large collective spins known as
bound magnetic polarons. Experimental measurements of the susceptibility of
these materials have suggested that the polaron-polaron interaction is
ferromagnetic, in contrast to the antiferromagnetic carrier-carrier
interactions that are characteristic of nonmagnetic semiconductors. To explain
this behavior, a model has been developed in which polarons interact via both
the standard direct carrier-carrier exchange interaction (due to virtual
carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due
to the interactions of polarons with magnetic ions in an interstitial region).
Using a variational procedure, the optimal values of the model parameters were
determined as a function of temperature. At temperatures of interest, the
parameters describing polaron-polaron interactions were found to be nearly
temperature-independent. For reasonable values of these constant parameters, we
find that indirect ferromagnetic interactions can dominate the direct
antiferromagnetic interactions and cause the polarons to align. This result
supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure
Applications of quark-hadron duality in F2 structure function
Inclusive electron-proton and electron-deuteron inelastic cross sections have
been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken
x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the
experiment E00-116. These measurements are used to extend to larger x and Q2
precision, quantitative, studies of the phenomenon of quark-hadron duality. Our
analysis confirms, both globally and locally, the apparent violation of
quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance
data are compared to structure function data created from CTEQ6M and MRST2004
parton distribution functions (PDFs). More importantly, our new data show that
this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This
suggests only small violations of Q2 evolution by contributions from the
higher-twist terms in the resonance region which is confirmed by our
comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength
of the CTEQ6M and MRST2004 PDFs at large x is the major source of the
disagreement between data and these parameterizations in the kinematic regime
we study and that, in view of quark-hadron duality, properly averaged resonance
region data could be used in global QCD fits to reduce PDF uncertainties at
large x.Comment: 35 page
- …