55 research outputs found
On the Evaluation of the Hyperthermic Efficiency of Magnetic Scaffolds
Goal: Deep-seated tumors (DST) can be treated using thermoseeds exposed to a radiofrequency magnetic field for performing local interstitial hyperthermia treatment (HT). Several research efforts were oriented to the manufacturing of novel biocompatible magnetic nanostructured thermo-seeds, called magnetic scaffolds (MagS). Several iron-doped bioceramics or magnetic polymers in various formulations are available. However, the crucial evaluation of their heating potential has been carried out with significantly different, lab specific, variable experimental conditions and protocols often ignoring the several error sources and inaccuracies estimation. Methods: This work comments and provides a perspective analysis of an experimental protocol for the estimation methodology of the specific absorption rate (SAR) of MagS for DST HT. Numerical multiphysics simultions have been performed to outline the theoretical framework. After the in silico analysis, an experimental case is considered and tested. Results: From the simulations, we found that large overestimation in the SAR values can be found, due to the axial misplacement in the radiofrequency coil, while the radial misplacement has a lower impact on the estimated SAR value. Conclusions: The averaging of multiple temperature records is needed to reliably and effectively estimate the SAR of MagS for DST HT
Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles
Biomedical nanomagnetic carriers are getting a higher impact in therapy and
diagnosis schemes while their constraints and prerequisites are more and more
successfully confronted. Such particles should possess a well-defined size
with minimum agglomeration and they should be synthesized in a facile and
reproducible high-yield way together with a controllable response to an
applied static or dynamic field tailored for the specific application. Here,
we attempt to enhance the heating efficiency in magnetic particle hyperthermia
treatment through the proper adjustment of the core–shell morphology in
ferrite particles, by controlling exchange and dipolar magnetic interactions
at the nanoscale. Thus, core–shell nanoparticles with mutual coupling of
magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with
facile synthetic controls resulting in uniform size and shell thickness as
evidenced by high resolution transmission electron microscopy imaging,
excellent crystallinity and size monodispersity. Such a magnetic coupling
enables the fine tuning of magnetic anisotropy and magnetic interactions
without sparing the good structural, chemical and colloidal stability.
Consequently, the magnetic heating efficiency of CoFe2O4 and MnFe2O4
core–shell nanoparticles is distinctively different from that of their
counterparts, even though all these nanocrystals were synthesized under
similar conditions. For better understanding of the AC magnetic hyperthermia
response and its correlation with magnetic-origin features we study the effect
of the volume ratio of magnetic hard and soft phases in the bimagnetic
core−shell nanocrystals. Eventually, such particles may be considered as novel
heating carriers that under further biomedical functionalization may become
adaptable multifunctional heat-triggered nanoplatforms
Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters
The use of magnetic nanostructures as theranostic agents is a multiplex task as physiochemical and biochemical properties including excellent magneto-responsive properties, low toxicity, colloidal stability and facile surface engineering capability are all required. Nonetheless, much progress has been made in recent years synthesis of “all-in-one” MNPs remain unambiguously challenging. Towards this direction, in this study is presented a facile incorporation of a soft magnetic phase (MnFe2O4 NPs) with a hard phase (CoFe2O4 NPs) in the presence of the biocompatible polymer sodium dodecyl sulfate (SDS), into spherical and compact bi-magnetic nanoclusters (NCs) with modulated magnetic properties that critically enhance hyperthermic efficiency and MRI contrast effect. Hydrophobic MnFe2O4 and CoFe2O4 NPs coated with oleylamine of the same size (9 nm) were used as primary building units for the formation of the bi-magnetic NCs through a microemulsion approach where a set of experiments were conducted to identify the optimal concentration of SDS (19.5 mM) for the cluster formation. Additionally, homo-magnetic NCs of MnFe2O4 NPs and CoFe2O4 NPs, respectively were synthesized for comparative studies. The presence of distinct magnetic phases within the bi-magnetic NCs resulting in synergistic behavior, where the soft phase offers moderate coercivity Hc and the hard one high magnetization Ms. Increased specific loss power (SLP) value was obtained for the bi-magnetic system (525 W/g) when compared with the homo-magnetic NCs (104 W/g for MnNCs and 223 W/g for CoNCs) under field conditions of 25 kA/m and 765 kHz. Relaxivities (r2) of the bi-magnetic NCs were also higher (81.8 mM−1 s−1) than those of the homo-magnetic NCs (47.4 mM−1 s−1 for MnNCs and 3.1 mM−1 s−1 for CoNCs), while the high r2/r1 value renders the system suitable for T2-weighted MRI imaging
Conditions determining the morphology and nanoscale magnetism of Co nanoparticles: Experimental and numerical studies
Co-based nanostructures ranging from core-shell to hollow nanoparticles were
produced by varying the reaction time and the chemical environment during the
thermal decomposition of Co2(CO)8. Both structural characterization and kinetic
model simulation illustrate that the diffusivities of Co and oxygen determine
the growth ratio and the final morphology of the nanoparticles. Exchange
coupling between Co and Co-oxide in core/shell nanoparticles induced a shift of
field-cooled hysteresis loops that is proportional to the shell thickness, as
verified by numerical studies. The increased nanocomplexity when going from
core/shell to hollow particles, also leads to the appearance of hysteresis
above 300 K due to an enhancement of the surface anisotropy resulting from the
additional spin-disordered surfaces.Comment: 29 pages including 11 figures embedded. Submitted to Phys. Rev.
In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice
Promising advances in nanomedicine such as magnetic hyperthermia rely on a precise control of the nanoparticle performance in the cellular environment. This constitutes a huge research challenge due to difficulties for achieving a remote control within the human body. Here we report on the significant double role of the shape of ellipsoidal magnetic nanoparticles (nanorods) subjected to an external AC magnetic field: first, the heat release is increased due to the additional shape anisotropy; second, the rods dynamically reorientate in the orthogonal direction to the AC field direction. Importantly, the heating performance and the directional orientation occur in synergy and can be easily controlled by changing the AC field treatment duration, thus opening the pathway to combined hyperthermic/ mechanical nanoactuators for biomedicine. Preliminary studies demonstrate the high accumulation of nanorods into HeLa cells whereas viability analysis supports their low toxicity and the absence of apoptotic or necrotic cell death after 24 or 48 h of incubationThis work was partially supported by the EC FP-7 grant “NanoMag” (grant agreement no. 604448), the Spanish Ministry of Economy and Competitiveness (MAT2013-47078-C2-2-P, MAT2014-52069-R, MAT2013-47395-C4-3-R, MAT2015- 67557-C2-1-P-MICINN, CONSOLIDER CSD2007-00041, CTQ2013-48767-C3-3-R), and Gobierno de la Comunidad de Madrid (NANOFRONTMAG, S2013/MIT-2850). D.S. acknowledges financial support from Xunta de Galicia (I2C Postdoctoral Plan). A.T. thanks UAM for a predoctoral contrac
Controlling Magnetization Reversal and Hyperthermia Efficiency in Core-Shell Iron-Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling
Magnetic particle hyperthermia, in which colloidal nanostructures are exposed to an alternating magnetic field, is a promising approach to cancer therapy. Unfortunately, the clinical efficacy of hyperthermia has not yet been optimized. Consequently, routes to improve magnetic particle hyperthermia, such as designing hybrid structures comprised of different phase materials, are actively pursued. Here, we demonstrate enhanced hyperthermia efficiency in relatively large spherical Fe/Fe-oxide core-shell nanoparticles through the manipulation of interactions between the core and shell phases. Experimental results on representative samples with diameters in the range 30-80 nm indicate a direct correlation of hysteresis losses to the observed heating with a maximum efficiency of around 0.9 kW/g. The absolute particle size, the core-shell ratio, and the interposition of a thin wüstite interlayer are shown to have powerful effects on the specific absorption rate. By comparing our measurements to micromagnetic calculations, we have unveiled the occurrence of topologically nontrivial magnetization reversal modes under which interparticle interactions become negligible, aggregates formation is minimized and the energy that is converted into heat is increased. This information has been overlooked until date and is in stark contrast to the existing knowledge on homogeneous particles
Cell Membrane-Coated Magnetic Nanocubes with a Homotypic Targeting Ability Increase Intracellular Temperature due to ROS Scavenging and Act as a Versatile Theranostic System for Glioblastoma Multiforme
In this study, hybrid nanocubes composed of magnetite (Fe3O4) and manganese dioxide (MnO2), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 \ub0C) due to the exothermic scavenging reaction of hydrogen peroxide (H2O2) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 \ub5g mL 121 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia
Paclitaxel Magnetic Core⁻Shell Nanoparticles Based on Poly(lactic acid) Semitelechelic Novel Block Copolymers for Combined Hyperthermia and Chemotherapy Treatment of Cancer.
Magnetic hybrid inorganic/organic nanocarriers are promising alternatives for targeted cancer treatment. The present study evaluates the preparation of manganese ferrite magnetic nanoparticles (MnFe2O4 MNPs) encapsulated within Paclitaxel (PTX) loaded thioether-containing ω-hydroxyacid-co-poly(d,l-lactic acid) (TEHA-co-PDLLA) polymeric nanoparticles, for the combined hyperthermia and chemotherapy treatment of cancer. Initially, TEHA-co-PDLLA semitelechelic block copolymers were synthesized and characterized by 1H-NMR, FTIR, DSC, and XRD. FTIR analysis showed the formation of an ester bond between the two compounds, while DSC and XRD analysis showed that the prepared copolymers were amorphous. MnFe2O4 MNPs of relatively small crystallite size (12 nm) and moderate saturation magnetization (64 emu·g-1) were solvothermally synthesized in the sole presence of octadecylamine (ODA). PTX was amorphously dispersed within the polymeric matrix using emulsification/solvent evaporation method. Scanning electron microscopy along with energy-dispersive X-ray spectroscopy and transmission electron microscopy showed that the MnFe2O4 nanoparticles were effectively encapsulated within the drug-loaded polymeric nanoparticles. Dynamic light scattering measurements showed that the prepared nanoparticles had an average particle size of less than 160 nm with satisfactory yield and encapsulation efficiency. Diphasic PTX in vitro release over 18 days was observed while PTX dissolution rate was mainly controlled by the TEHA content. Finally, hyperthermia measurements and cytotoxicity studies were performed to evaluate the magnetic response, as well as the anticancer activity and the biocompatibility of the prepared nanocarriers
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios
The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties
- …