74 research outputs found

    Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn\u3csub\u3e4\u3c/sub\u3eO(1,4-benzenedicarboxylate)\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Metal organic framework-5 (MOF-5)was recently suggested to possess an exceptionally large negative thermal-expansion coefficient. Our direct experimental measurement of the thermal expansion of MOF-5 using neutron powder diffraction, in the temperature range of 4 to 600 K, shows that the linear thermal-expansion coefficient is ≈−16×10−6 K−1. To understand the origin of this large negative thermal-expansion behavior, we performed first-principles lattice dynamics calculations. The calculated thermal-expansion coefficients within quasiharmonic approximation agree well with the experimental data. We found that almost all lowfrequency lattice vibrational modes (below ∼23 meV) involve the motion of the benzene rings and the ZnO4 clusters as rigid units and the carboxyl groups as bridges. These so-called “rigid-unit modes” exhibit various degrees of phonon softening (i.e., the vibrational energy decreases with contracting crystal lattice) and thus are directly responsible for the large negative thermal expansion in MOF-5. Initial efforts were made to observe the phonon softening experimentally

    Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

    Get PDF
    We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement
    corecore