8 research outputs found

    The Functioning of a Water Body Within a Fluvio-Lacustrine System as an Effect of Excessive Nitrogen Loading—The Case of Lake Symsar and its Drainage Area (Northeastern Poland)

    No full text
    Generally, in water ecosystems, it is assumed that rivers play a transport role. In turn, lakes have accumulation properties. However, in fluvio-lacustrine systems, each water body located on a river track can disrupt naturally occurring processes. One such process is the nitrogen cycle. An analysis of the nitrogen cycle, at both the global and local levels, is of extreme significance in view of the progressive degradation of aquatic ecosystems. In this study, we attempted to show that the specific properties of reservoirs located in river–lake systems contribute to an adequate reaction of these reservoirs to situations involving an excessive pollution load. Despite the intensive exchange of water in lakes, they were mainly shown to have an accumulation function. In particular, in those located in the lower part of the system, the total nitrogen load transported outside the example reservoir decreased by 4.3%. The role of these reservoirs depends on the morphometric, hydrologic, and meteorological conditions. The actual loading of the water body was shown to be more than double the permitted critical loading. The creation of conditions similar to those occurring in river–lake systems by, for example, delaying the outflow of water, may favor the protection of surface water from the last element of the system, because this limits the transport of pollutants. This study of the functioning and evolution of lakes’ fluvio-lacustrine systems, including the balance of the nutrient load, enables the prediction of the aquatic ecosystem’s responses in the future and their changes

    Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland

    No full text
    River-lake systems most often behave as hydrographic units, which undergo complex interactions, especially in the contact zone. One such interaction pertains to the role of a river in the dispersal of trace elements carried into and out of a lake. In this study, we aimed to assess the impact of rivers on the accumulation of heavy metals in bottom sediments of natural lakes comprised in postglacial river-lake systems. The results showed that a river flowing through a lake is a key factor responsible for the input of the majority of available fraction of heavy metals (Zn, Mn, Cd and Ni) into the water body and for their accumulation along the flow of river water in the lake. The origin of other accumulated elements were the linear and point sources in catchments. In turn, the Pb content was associated with the location of roads in the direct catchment, while the sediment structure (especially size of fraction and density) could have affected the accumulation of Cr and Zn, which indicated correlations between these metals and fine fraction. Our results suggest that lakes act as filters and contribute to the self-purification of water that flows through them. As a result, the content of most metals in lake sediments showed a decrease by approx. 75% between the upstream (inflow) and downstream (outflow) sections. The increased content of two metals only, such as chromium and cadmium (higher by 2.0 and 2.5 times, respectively, after passing through the lake), was due to the correlation of the metals with fine sand. Both the content and distribution pattern of heavy metals in lake sediments are indicative of the natural response of aquatic ecosystems to environmental stressors, such as pollutant import with river water or climate change. The complex elements creating the water ecosystem of each lake can counteract stress by temporarily removing pollutants such as toxic metals form circulation and depositing them mostly around the delta

    Variability of the water availability in a river lake system – A case study of Lake Symsar

    No full text
    It is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical) water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned

    Effect of bottom sediments on the nutrient and metal concentration in macrophytes of river-lake systems

    No full text
    Water bodies of river-lake systems can act as barriers in the movement of nutrients and toxic heavy metals outside their water catchment area. These components can be suspended in the water column, deposited in bottom sediments or bioaccumulated by the vegetation in the water body. A constant exchange of substances takes place between bottom sediments and macrophytes. The composition of bottom sediments and their distribution affects the intensity of nutrients and metals assimilation by macrophytes in the river-lake systems. The aim of research was to analyse the effect of bottom sediments on the nutrients and metal content in macrophytes. It was demonstrated that tissues of plants anchored in sediments that were more abundant in nutrients had higher contents of biogenic components and heavy metals. The properties of bottom sediments, mainly their granulometric composition, but also organic matter content and pH, determine the content of biogenes and heavy metals in macrophytes to a significant extent. On the other hand, it was demonstrated that aquatic plants could affect the grain size in the sediments. Macrophytes and sediments of river-lake systems play a very important role in reducing the transport of nutrients outside the area of the system, through capturing and incorporating them into the tissues of aquatic plants.Our research concerns functioning of the river-lake system through an analysis of factors affecting the assimilation of biogenes and metals by aquatic plants typical for such a system. The greatest effect on the accumulation of an excessive amount of substances like nutrients and heavy metals occurring in the water ecosystem of the river and lake system seems to be demonstrated by the properties of the bottom sediments, mainly their granulometric composition. On the other hand, it was demonstrated that aquatic plants can have an effect on the fraction size in sediments, particularly near the outlet of the river to the water body.The obtained results could contribute to the creation of controlled conditions favouring contamination capture, which could a ffect the advancement of knowledge concerning the functioning of freshwater aquatic ecosystems

    Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland

    No full text
    River-lake systems most often behave as hydrographic units, which undergo complex interactions, especially in the contact zone. One such interaction pertains to the role of a river in the dispersal of trace elements carried into and out of a lake. In this study, we aimed to assess the impact of rivers on the accumulation of heavy metals in bottom sediments of natural lakes comprised in postglacial river-lake systems. The results showed that a river flowing through a lake is a key factor responsible for the input of the majority of available fraction of heavy metals (Zn, Mn, Cd and Ni) into the water body and for their accumulation along the flow of river water in the lake. The origin of other accumulated elements were the linear and point sources in catchments. In turn, the Pb content was associated with the location of roads in the direct catchment, while the sediment structure (especially size of fraction and density) could have affected the accumulation of Cr and Zn, which indicated correlations between these metals and fine fraction. Our results suggest that lakes act as filters and contribute to the self-purification of water that flows through them. As a result, the content of most metals in lake sediments showed a decrease by approx. 75% between the upstream (inflow) and downstream (outflow) sections. The increased content of two metals only, such as chromium and cadmium (higher by 2.0 and 2.5 times, respectively, after passing through the lake), was due to the correlation of the metals with fine sand. Both the content and distribution pattern of heavy metals in lake sediments are indicative of the natural response of aquatic ecosystems to environmental stressors, such as pollutant import with river water or climate change. The complex elements creating the water ecosystem of each lake can counteract stress by temporarily removing pollutants such as toxic metals form circulation and depositing them mostly around the delta

    Role of River–Lake System Sediments and Microbial Activity in the Hyporheic Zone

    No full text
    The effect of river–lake systems on the surface water self-purification process is a significant and not fully recognised scientific issue. The conditions prevailing in the hyporheic zone of these ecosystems are of great importance in the process of component exchange between water and sediments. The aim of this study was to investigate the influence of the type of sediments located at the bottom of the riverbed being part of a river–lake system on microbial activity in the hyporheic zone. An ex situ experiment was used to study the microbiological activity and the transformation of components in the collected river sediments. It was found that the specific properties of sediments varied depending on their location in the riverbed between the lakes comprising the system and that the prevailing meteorological conditions can also have an effect on microbial activity in the hyporheic zone, e.g., aerobic conditions. These conditions determined the intensity of component conversion in the sediments due to microbial metabolism. A closer understanding of the processes occurring in the hyporheic zone may allow the processes of water self-purification within river–lake systems to be supported in the future, which will contribute to the improvement of surface water quality

    Role of River–Lake System Sediments and Microbial Activity in the Hyporheic Zone

    No full text
    The effect of river–lake systems on the surface water self-purification process is a significant and not fully recognised scientific issue. The conditions prevailing in the hyporheic zone of these ecosystems are of great importance in the process of component exchange between water and sediments. The aim of this study was to investigate the influence of the type of sediments located at the bottom of the riverbed being part of a river–lake system on microbial activity in the hyporheic zone. An ex situ experiment was used to study the microbiological activity and the transformation of components in the collected river sediments. It was found that the specific properties of sediments varied depending on their location in the riverbed between the lakes comprising the system and that the prevailing meteorological conditions can also have an effect on microbial activity in the hyporheic zone, e.g., aerobic conditions. These conditions determined the intensity of component conversion in the sediments due to microbial metabolism. A closer understanding of the processes occurring in the hyporheic zone may allow the processes of water self-purification within river–lake systems to be supported in the future, which will contribute to the improvement of surface water quality
    corecore