40 research outputs found

    Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins

    Get PDF
    The human serine proteases granzymes A and B are expressed in cytotoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme A and granzyme B proteins were produced in bacteria, purified and then used to raise specific mouse monoclonal antibodies. Seven monoclonal antibodies (mAb) were raised against granzyme A, which all recognized the same or overlapping epitopes. They reacted specifically in an immunoblot of interleukin-2 (IL-2) stimulated PBMNC with a disulfide-linked homodimer of 43 kDa consisting of 28 kDa subunits. Seven mAb against granzyme B were obtained, which could be divided into two groups, each recognizing a different epitope. On an immunoblot, all mAb reacted with a monomer of 33 kDa protein. By immunohistochemistry, these mAb could be used to detect granzymes A and B expression in activated CTL and NK cells. The availability of these mAb may facilitate studies on the role of human cytotoxic cells in various immune reactions and may contribute to a better understanding of the role of granzmes A and B in the cytotoxic response in vivo

    Substitution of Mannan-Binding Lectin (MBL)-Deficient Serum With Recombinant MBL Results in the Formation of New MBL/MBL-Associated Serine Protease Complexes

    Get PDF
    The lectin pathway (LP) of complement activation depends on the activation of the MBL-associated serine proteases (MASPs) circulating in complex with mannan-binding lectin (MBL). MBL deficiency is the most common complement deficiency and has been associated with several pathological conditions. As we had previously shown, plasma-derived MBL (pdMBL) contains pre-activated MASPs that upon in vivo pdMBL substitution results in restoration of MBL concentrations but no LP functionality due to immediate inactivation of pdMBL–MASP complexes upon infusion. In this study, we analyzed MBL-sufficient and -deficient serum by size-exclusion chromatography for complexes of LP activation. In both sera, we identified non-bound free forms of MASP-2 and to lesser extent MASP-1/3. After addition of recombinant MBL (rMBL) to MBL-deficient serum, these free MASPs were much less abundantly present, which is highly suggestive for the formation of high-molecular complexes that could still become activated upon subsequent ligand binding as shown by a restoration of C4-deposition of MBL-deficient serum. Ficolin (FCN)-associated MASPs have been described to redistribute to ligand-bound MBL, hereby forming new MBL/MASP complexes. However, reconstitution of MBL-deficient serum with rMBL did not change the relative size of the FCN molecules suggestive for a limited redistribution in fluid phase of already formed complexes. Our findings demonstrate that rMBL can associate with free non-bound MASPs in fluid phase while preserving full restoration of LP functionality. In contrast to pdMBL products containing pre-activated MASPs which become inactivated almost immediately, these current data provide a rationale for substitution studies using rMBL instead

    Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand

    Get PDF
    The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex

    Substitution of Mannan-Binding Lectin (MBL)-Deficient serum with recombinant MBL results in the formation of New MBL/MBL-associated serine protease complexes

    No full text
    The lectin pathway (LP) of complement activation depends on the activation of the MBL-associated serine proteases (MASPs) circulating in complex with mannan-binding lectin (MBL). MBL deficiency is the most common complement deficiency and has been associated with several pathological conditions. As we had previously shown, plasma-derived MBL (pdMBL) contains pre-activated MASPs that upon in vivo pdMBL substitution results in restoration of MBL concentrations but no LP functionality due to immediate inactivation of pdMBL-MASP complexes upon infusion. In this study, we analyzed MBL-sufficient and -deficient serum by size-exclusion chromatography for complexes of LP activation. In both sera, we identified non-bound free forms of MASP-2 and to lesser extent MASP-1/3. After addition of recombinant MBL (rMBL) to MBL-deficient serum, these free MASPs were much less abundantly present, which is highly suggestive for the formation of high-molecular complexes that could still become activated upon subsequent ligand binding as shown by a restoration of C4-deposition of MBL-deficient serum. Ficolin (FCN)-associated MASPs have been described to redistribute to ligand-bound MBL, hereby forming new MBL/MASP complexes. However, reconstitution of MBL-deficient serum with rMBL did not change the relative size of the FCN molecules suggestive for a limited redistribution in fluid phase of already formed complexes. Our findings demonstrate that rMBL can associate with free non-bound MASPs in fluid phase while preserving full restoration of LP functionality. In contrast to pdMBL products containing pre-activated MASPs which become inactivated almost immediately, these current data provide a rationale for substitution studies using rMBL instead

    Plasma-derived mannose-binding lectin shows a direct interaction with C1-inhibitor

    No full text
    MBL-deficiency has been associated with an increased frequency and severity of infection, in particular in children and under immunocompromized conditions. In an open uncontrolled safety and pharmacokinetic MBL-substitution study using plasma-derived MBL (pdMBL) in MBL-deficient pediatric oncology patients, we found that despite MBL trough levels above 1.0μg/ml MBL functionality was not efficiently restored upon ex vivo testing. PdMBL showed C4-converting activity by itself, indicating the presence of MASPs. Upon incubation of pdMBL with MBL-deficient sera this C4-converting activity was significantly reduced. Depletion of the MASPs from pdMBL, paradoxically, restored the C4-converting activity. Subsequent depletion or inhibition of C1-inh, the major inhibitor of the lectin pathway, in the recipient serum restored the C4-converting activity as well. Complexes between MBL/MASPs and C1-inh (MMC-complexes) were detected after ex vivo substitution of MBL-deficient serum with pdMBL. These MMC-complexes could also be detected in the sera of the patients included in the MBL-substitution study shortly after pdMBL infusion. Altogether, we concluded that active MBL-MASP complexes in pdMBL directly interact with C1-inh in the recipient, leading to the formation of a multimolecular complex between C1-inh and MBL/MASPs, in contrast to the classical pathway where C1r and C1s are dissociated from C1q by C1-inh. Because of the presence of activated MASPs in the current pdMBL products efficient MBL-mediated host protection cannot be expected because of the neutralizing capacity by C1-in

    Light-Induced Coalescence of Plasmonic Dimers and Clusters.

    Get PDF
    The properties of nanoplasmonic structures depend strongly on their geometry, creating the need for high-precision control and characterization. Here, by exploiting the low activation energy of gold atoms on nanoparticle surfaces, we show how laser irradiation reshapes nanoparticle dimers. Time-course dark-field microspectroscopy allows this process to be studied in detail for individual nanostructures. Three regimes are identified: facet growth, formation of a conductive bridge between particles, and bridge growth. Electromagnetic simulations confirm the growth dynamics and allow measurement of bridge diameter, found to be highly reproducible and also self-limiting. Correlations in spectral resonances for the initial and final states give insight into the energy barriers for bridge growth. Dark-field microscopy shows that coalescence of multiple gaps in nanoparticle clusters can be digitally triggered, with each gap closing after discrete increases in irradiation power. Such control is important for light-induced nanowire formation or trimming of electronic and optoelectronic devices
    corecore