112 research outputs found

    Metallicity evolution of AGNs from UV emission-lines based on a new index

    Get PDF
    We analyzed the evolution of the metallicity of the gas with the redshift for a sample of AGNs in a very wide redshift range (0<z<4) using ultraviolet emission-lines from the narrow-line regions (NLRs) and photoionization models. The new index C43=log(CIV+CIII])/HeII is suggested as a metallicity indicator for AGNs. Based on this indicator, we confirmed the no metallicity evolution of NLRs with the redshift pointed out by previous works. We found that metallicity of AGNs shows similar evolution than the one predicted by cosmic semi-analytic models of galaxy formation set within the Cold Dark Matter merging hierarchy (for z < 3). Our results predict a mean metallicity for local objects in agreement with the solar value (12+log(O/H)=8.69). This value is about the same that the maximum oxygen abundance value derived for the central parts of local spiral galaxies. Very low metallicity log(Z/Z_{\odot})~ -0.8 for some objects in the range 1.5 < z <3 is derived.Comment: 25 pages, 10 figures, accepted MNRA

    Effective temperature of ionizing stars in extragalactic HII regions - II. Nebular parameter relationships based on CALIFA data

    Get PDF
    We calculate the effective temperature (Teff) of ionizing star(s), the oxygen abundance of the gas phase (O/H), and the ionization parameter U for a sample of HII regions located in the discs of 59 spiral galaxies in the redshift range 0.005 < z < 0.03. We use spectroscopic data taken from the CALIFA data release 3 (DR3) and theoretical (for Teff and U) and empirical (for O/H) calibrations based on strong emission lines. We consider the spatial distribution and radial gradients of these parameters in each galactic disc for the objects in our sample. Most of the galaxies in our sample (∼70 per cent) show positive Teff radial gradients, although some exhibit negative or flat ones. The median value of the Teff radial gradient is 0.762 kK/R25. We find that the radial gradients of both logUand Teff depend on the oxygen abundance gradient, in the sense that the gradient of logU increases as the log(O/H) gradient increases while there is an anti-correlation between the gradient of Teff and the oxygen abundance gradient. Moreover, galaxies with flat oxygen abundance gradients tend to have flat logU and Teff gradients as well. Although our results are in agreement with the idea of the existence of positive Teff gradients along the disc of the majority of spiral galaxies, it seems that this is not a universal property for these objects.Fil: Zinchenko, I. A.. Main Astronomical Observatory of National Academy of Sciences of Ukraine; Ucrania. Zentrum für Astronomie der Universität Heidelberg; AlemaniaFil: Dors, Oli L.. Universidade do Vale do Paraíba; BrasilFil: Hägele, Guillermo Federico. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cardaci, Monica Viviana. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Krabbe, Angela. Universidade do Vale do Paraíba; Brasi

    Optical and mid-infrared neon abundance determinations in star-forming regions

    Get PDF
    We employed observational spectroscopic data of star-forming regions compiled from the literature and photoionization models to analyse the neon ionic abundances obtained using both optical and mid-infrared emission-lines. Comparing Ne++/H+ ionic abundances from distinct methods, we found that, in average, the abundances obtained via IR emission-lines are higher than those obtained via optical lines by a factor of 4. Photoionization models with abundance variations along the radius of the hypothetical nebula provide a possible explanation for a large part of the difference between ionic abundances via optical and infrared emission-lines. Ionization Correction Factor (ICF) for the neon is obtained from direct determinations of ionic fractions using infrared emission-lines. A constant Ne/O ratio (logNe/O \approx -0.70) for a large range of metallicity, independently of the ICF used to compute the neon total abundance is derived.Comment: 17 pages, 14 figures, accepted by MNRA

    X-rays as dominant excitation mechanism of [Fe ii] and H2 emission lines in active galaxies

    Get PDF
    We investigate the excitation mechanisms of near-infrared [Fe ii] and H2 emission lines observed in Active Galactic Nuclei (AGNs). We built a photoionization model grid considering a two-component continuum, one accounts for the Big Bump component peaking at 1Ryd and another represents the X-ray source that dominates the continuum emission at high energies. Photoionization models considering as ionizing source a spectral energy distribution obtained from photometric data of the Sy 2 Mrk 1066 taken from the literature were considered. Results of these models were compared with a large sample of observational long-slit and Integral field Unit (IFU) spectroscopy data of the nuclear region for a sample of active objects. We found that the correlation between the observational [Fe ii]{\lambda}1.2570 {\mu}m/Pa{\beta} vs. H2{\lambda}2.1218 {\mu}m/Br{\gamma} is well reproduced by our models as well as the relationships that involve the H2 emission line ratios observed in the spectroscopic data.We conclude that the heating by X-rays produced by active nuclei can be considered a common and very important mechanism of excitation of [Fe ii] and H2.Comment: 10 pages, 9 figures, accepted by MNRA

    Chemical abundances in Seyfert galaxies : VII. Direct abundance determination of neon based on optical and infrared emission lines

    Get PDF
    For the first time, neon abundance has been derived in the narrow line region from a sample of Seyfert 2 nuclei. In view of this, we compiled from the literature fluxes of optical and infrared (IR) narrow emission lines for 35 Seyfert 2 nuclei in the local universe (z 0.06). The relative intensities of emission lines were used to derive the ionic and total neon and oxygen abundances through electron temperature estimations (Te-method). For the neon, abundance estimates were obtained by using both Te-method and IR-method. Based on photoionization model results, we found a lower electron temperature [te(Ne iii)] for the gas phase where the Ne2 + is located in comparison with t3 for the O2 + ion. We find that the differences (D) between Ne2 +/H+ ionic abundances calculated from IR-method and Te-method (assuming t3 in the Ne2 +/H+ derivation) are similar to the derivations in star-forming regions (SFs) and they are reduced by a mean factor of ∼3 when te(Ne iii) is considered. We propose a semi-empirical Ionization Correction Factor (ICF) for the neon, based on [Ne II]12.81μm, [Ne III]15.56μm, and oxygen ionic abundance ratios. We find that the average Ne/H abundance for the Seyfert 2s sample is nearly 2 times higher than similar estimate for SFs. Finally, for the very high metallicity regime (i.e. [12 + log(O/H) 8.80]) an increase in Ne/O with O/H is found, which likely indicates secondary stellar production for the neon

    Chemical abundance of the LINER galaxy UGC 4805 with SDSS-IV MaNGA

    Get PDF
    Chemical abundance determinations in Low-Ionization Nuclear Line Regions (LINERs) are especially complex and uncertain because the nature of the ionizing source of this kind of object is unknown. In this work, we study the oxygen abundance in relation to the hydrogen abundance (O/H) of the gas phase of the UGC 4805 LINER nucleus. Optical spectroscopic data from the Mapping Nearby Galaxies (MaNGA) survey was employed to derive the O/H abundance of the UGC 4805 nucleus based on the extrapolation of the disk abundance gradient, on calibrations between O/H abundance and strong emission-lines for Active Galactic Nuclei (AGNs) as well as on photoionization models built with the Cloudy code, assuming gas accretion into a black hole (AGN) and post-Asymptotic Giant Branch (p-AGB) stars with different effective temperatures. We found that abundance gradient extrapolations, AGN calibrations, AGN and p-AGB photoionization models produce similar O/H values for the UGC 4805 nucleus and similar ionization parameter values. The study demonstrated that the methods used to estimate the O/H abundance using nuclear emission-line ratios produce reliable results, which are in agreement with the O/H values obtained from the independent method of galactic metallicity gradient extrapolation. Finally, the results from the WHAN diagram combined with the fact that the high excitation level of the gas has to be maintained at kpc scales, we suggest that the main ionizing source of the UGC 4805 nucleus probably has a stellar origin rather than an AGN.Fil: Krabbe, Angela. Universidade Do Vale Do Paraíba; BrasilFil: Oliveira, C. B.. Universidade Do Vale Do Paraíba; BrasilFil: Zinchenko, I. A.. Universitat Ulm. Faculty Of Natural Sciences. Institute Of Theoretical Physics; AlemaniaFil: Hernández Jiménez, J. A.. Universidad Andrés Bello; ChileFil: Dors, Oli L.. Universidade Do Vale Do Paraíba; BrasilFil: Hägele, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cardaci, Monica Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Telles, N. R.. Universidade Do Vale Do Paraíba; Brasi

    Effective temperature of ionizing stars in extragalactic H II regions : II. Nebular parameter relationships based on CALIFA data

    Get PDF
    We calculate the effective temperature (Teff) of ionizing star(s), the oxygen abundance of the gas phase (O/H)⁠, and the ionization parameter U for a sample of H II regions located in the discs of 59 spiral galaxies in the redshift range 0.005 eff and U) and empirical (for O/H) calibrations based on strong emission lines. We consider the spatial distribution and radial gradients of these parameters in each galactic disc for the objects in our sample. Most of the galaxies in our sample (∼70 per cent) show positive Teff radial gradients, although some exhibit negative or flat ones. The median value of the Teff radial gradient is 0.762 kK/R25. We find that the radial gradients of both log U and Teff depend on the oxygen abundance gradient, in the sense that the gradient of log U increases as the log(O/H) gradient increases while there is an anti-correlation between the gradient of Teff and the oxygen abundance gradient. Moreover, galaxies with flat oxygen abundance gradients tend to have flat log U and Teff gradients as well. Although our results are in agreement with the idea of the existence of positive Teff gradients along the disc of the majority of spiral galaxies, it seems that this is not a universal property for these objects.Instituto de Astrofísica de La Plat

    Chemical abundances in Seyfert galaxies : V. The discovery of shocked emission outside the AGN ionization axis

    Get PDF
    We present maps for the electron temperature in the inner kpc of three luminous Seyfert galaxies: Mrk 79, Mrk 348, and Mrk 607 obtained from Gemini Multi-Object Spectrograph-integral field unit observations at spatial resolutions of ∼110–280 pc. We study the distributions of electron temperature in active galaxies and find temperatures varying in the range from ∼8000 to 30 000 K. Shocks due to gas outflows play an important role in the observed temperature distributions of Mrk 79 and Mrk 348, while standard photoionization models reproduce the derived temperature values for Mrk 607. In Mrk 79 and Mrk 348, we find direct evidence for shock ionization with overall orientation orthogonal to the ionization axis, where shocks can be easily observed as the active galactic nuclei radiation field is shielded by the nuclear dusty torus. This also indicates that even when the ionization cones are narrow, the shocks can be much wider angle

    Chemical abundance of the LINER galaxy UGC 4805 with SDSS-IV MaNGA

    Get PDF
    Chemical abundance determinations in Low-Ionization Nuclear Line Regions (LINERs) are especially complex and uncertain because the nature of the ionizing source of this kind of object is unknown. In this work, we study the oxygen abundance in relation to the hydrogen abundance (O/H) of the gas phase of the UGC 4805 LINER nucleus. Optical spectroscopic data from the Mapping Nearby Galaxies (MaNGA) survey was employed to derive the O/H abundance of the UGC 4805 nucleus based on the extrapolation of the disk abundance gradient, on calibrations between O/H abundance and strong emission-lines for Active Galactic Nuclei (AGNs) as well as on photoionization models built with the Cloudy code, assuming gas accretion into a black hole (AGN) and post-Asymptotic Giant Branch (p-AGB) stars with different effective temperatures. We found that abundance gradient extrapolations, AGN calibrations, AGN and p-AGB photoionization models produce similar O/H values for the UGC 4805 nucleus and similar ionization parameter values. The study demonstrated that the methods used to estimate the O/H abundance using nuclear emission-line ratios produce reliable results, which are in agreement with the O/H values obtained from the independent method of galactic metallicity gradient extrapolation. Finally, the results from the WHAN diagram combined with the fact that the high excitation level of the gas has to be maintained at kpc scales, we suggest that the main ionizing source of the UGC 4805 nucleus probably has a stellar origin rather than an AGN.Instituto de Astrofísica de La Plat
    corecore