74 research outputs found
Transport across nanogaps using semiclassically consistent boundary conditions
Charge particle transport across nanogaps is studied theoretically within the
Schrodinger-Poisson mean field framework and the existence of limiting current
investigated. It is shown that the choice of a first order WKB wavefunction as
the transmitted wave leads to self consistent boundary conditions and gives
results that are significantly different in the non-classical regime from those
obtained using a plane transmitted wave. At zero injection energies, the
quantum limiting current density, J_c, is found to obey the local scaling law
J_c ~ (V_g)^alpha/(D)^{5-2alpha} with the gap separation D and voltage V_g. The
exponent alpha > 1.1 with alpha --> 3/2 in the classical regime of small de
Broglie wavelengths. These results are consistent with recent experiments using
nanogaps most of which are found to be in a parameter regime where classical
space charge limited scaling holds away from the emission dominated regime.Comment: 4 pages, 4 ps figure
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background:
In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).
Findings:
Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001).
Interpretation:
In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Variations and modelling of oxygen demand in amino acid production
The L-lysine fermentation by Brevibacteria lactofermentum was investigated in this study. The objective was to improve the process performance by manipulating cellular environment conditions. The main factor under consideration was dissolved oxygen concentration (DOC) in the broth. To implement effective process control, a process model was developed based on combined kinetic study and material balances. The process dynamics at the dissolved oxygen tensions (DOTs) of 2%, 5%, 10%, and 20% was analysed. The results showed that inhibition of high oxygen level could occur during the very early growth phase and depressive effect of low oxygen availability was confined to the rest of the process, suggesting that different fermentation stages required different DOTs. Batch experiments were conducted with 3% DOT for the first 24 h, 10% for 24-48 h, and 5% for the rest of the fermentation, and the results were compared with those under 20% DOT throughout. The final L-lysine concentration reached 51.4 g/l compared with 45 g/l; the overall yield increased from 0.300g/g to 0.343g/g; and the productivity was improved from 0.616 g/l/h to 0.633 g/l/h. Also importantly, the low DOT settings required much less energy for agitation and aeration
Diagnosis of Tuberculous Uveitis: Clinical Application of an Interferon-gamma Release Assay
10.1016/j.ophtha.2009.02.005Ophthalmology11671391-1396OPHT
Electrospinning of polymethyl methacrylate nanofibers: Optimization of processing parameters using the Taguchi design of experiments
The effects of polymer concentration and electrospinning parameters on the diameter of electrospun polymethyl methacrylate (PMMA) fibers were experimentally investigated. It was also studied how the controlled factors would affect the output with the intention of finding the optimal electrospinning settings in order to obtain the smallest PMMA fiber diameter. Subsequently the solution feed rate, needle gauge diameter, supply voltage, polymer concentration and tip-to-collector distance were considered as the control factors. To achieve these aims, Taguchi's mixed-level parameter design (L-18) was employed for the experimental design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio that was calculated from the electrospun PMMA fiber diameter according to the-smaller-the-better approach. Accordingly, the smallest fiber diameter observed was 228 (+/- 76) nm and it was yielded at 15wt polymer concentration, 20kV of supply voltage, 1ml/h feed rate, 15cm tip-to-distance and 19 needle gauge. Moreover, the S/N ratio response showed that the polymer concentration was the most effective parameter on determination of fiber diameter followed by feed rate, tip-to distance, needle gauge and voltage, respectively. The Taguchi design of experiments method has been found to be an effective approach to statistically optimize the critical parameters used in electrospinning so as to effectively tailor the resulting electrospun fiber diameters and morphology
Sodium Hyaluronate in the Treatment of Dry Eye Syndrome: A Systematic Review and Meta-Analysis
10.1038/s41598-017-08534-5Scientific Reports71901
Indications, outcomes, and risk factors for failure in tectonic keratoplasty
10.1016/j.ophtha.2012.01.021Ophthalmology11971311-1319OPHT
- …