308 research outputs found

    An EMG-based eating behaviour monitoring system with haptic feedback to promote mindful eating

    Get PDF
    Mindless eating, or the lack of awareness of the food we are consuming, has been linked to health problems attributed to unhealthy eating behaviour, including obesity. Traditional approaches used to moderate eating behaviour often rely on inaccurate self-logging, manual observations or bulky equipment. Overall, there is a need for an intelligent and lightweight system which can automatically monitor eating behaviour and provide feedback. In this paper, we investigate: i) the development of an automated system for detecting eating behaviour using wearable Electromyography (EMG) sensors, and ii) the application of such a system in combination with real time wristband haptic feedback to facilitate mindful eating. Data collected from 16 participants were used to develop an algorithm for detecting chewing and swallowing. We extracted 18 features from EMG and presented those features to different classifiers. We demonstrated that eating behaviour can be automatically assessed accurately using the EMG-extracted features and a Support Vector Machine (SVM): F1-Score=0.94 for chewing classification, and F1-Score=0.86 for swallowing classification. Based on this algorithm, we developed a system to enable participants to self-moderate their chewing behaviour using haptic feedback. An experiment study was carried out with 20 additional participants showing that participants exhibited a lower rate of chewing when haptic feedback delivered in forms of wristband vibration was used compared to a baseline and non-haptic condition (F (2,38)=58.243, p<0.001). These findings may have major implications for research in eating behaviour, providing key new insights into the impacts of automatic chewing detection and haptic feedback systems on moderating eating behaviour with the aim to improve health outcomes

    Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    Full text link
    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    &lt;p&gt;Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.&lt;/p&gt; &lt;p&gt;Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.&lt;/p&gt; &lt;p&gt;Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS&lt;/p&gt

    State history and economic development: evidence from six millennia

    Get PDF
    The presence of a state is one of the most reliable historical predictors of social and economic development. In this article, we complete the coding of an extant indicator of state presence from 3500 BCE forward for almost all but the smallest countries of the world today. We outline a theoretical framework where accumulated state experience increases aggregate productivity in individual countries but where newer or relatively inexperienced states can reach a higher productivity maximum by learning from the experience of older states. The predicted pattern of comparative development is tested in an empirical analysis where we introduce our extended state history variable. Our key finding is that the current level of economic development across countries has a hump-shaped relationship with accumulated state history

    Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

    Get PDF
    Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis

    Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at Cdx2 and a Potential Indicator of Esophageal Adenocarcinoma Development

    Get PDF
    Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming

    A review of clinical trials of cetuximab combined with radiotherapy for non-small cell lung cancer

    Get PDF
    Treatment of non-small cell lung cancer (NSCLC) is challenging in many ways. One of the problems is disappointing local control rates in larger volume disease. Moreover, the likelihood of both nodal and distant spread increases with primary tumour (T-) stage. Many patients are elderly and have considerable comorbidity. Therefore, aggressive combined modality treatment might be contraindicated or poorly tolerated. In many cases with larger tumour volume, sufficiently high radiation doses can not be administered because the tolerance of surrounding normal tissues must be respected. Under such circumstances, simultaneous administration of radiosensitizing agents, which increase tumour cell kill, might improve the therapeutic ratio. If such agents have a favourable toxicity profile, even elderly patients might tolerate concomitant treatment. Based on sound preclinical evidence, several relatively small studies have examined radiotherapy (RT) with cetuximab in stage III NSCLC. Three different strategies were pursued: 1) RT plus cetuximab (2 studies), 2) induction chemotherapy followed by RT plus cetuximab (2 studies) and 3) concomitant RT and chemotherapy plus cetuximab (2 studies). Radiation doses were limited to 60-70 Gy. As a result of study design, in particular lack of randomised comparison between cetuximab and no cetuximab, the efficacy results are difficult to interpret. However, strategy 1) and 3) appear more promising than induction chemotherapy followed by RT and cetuximab. Toxicity and adverse events were more common when concomitant chemotherapy was given. Nevertheless, combined treatment appears feasible. The role of consolidation cetuximab after RT is uncertain. A large randomised phase III study of combined RT, chemotherapy and cetuximab has been initiated
    corecore