6 research outputs found

    Virtual haptic cell model for operator training

    Full text link
    Microrobotic cell injection is an area of growing research interest. Typically, operators rely on visual feedback to perceive the microscale environment and are subject to lengthy training times and low success rates. Haptic interaction offers the ability to utilise the operator’s haptic modality and to enhance operator performance. Our earlier work presented a haptically enabled system for assisting the operator with certain aspects of the cell injection task. The system aimed to enhance the operator’s controllability of the micropipette through a logical mapping between the haptic device and microrobot, as well as introducing virtual fixtures for haptic guidance. The system was also designed in such a way that given the availability of appropriate force sensors, haptic display of the cell penetration force is straightforward. This work presents our progress towards a virtual replication of the system, aimed at facilitating offline operator training. It is suggested that operators can use the virtual system to train offline and later transfer their skills to the physical system. In order to achieve the necessary representation of the cell within the virtual system, methods based on a particle-based cell model are utilised. In addition to providing the necessary visual representation, the cell model provides the ability to estimate cell penetration forces and haptically display them to the operator. Two different approaches to achieving the virtual system are discussed

    Multipoint haptic mediator interface for robotic teleoperation

    Full text link
    Despite recent advances in artificial intelligence and autonomous robotics, teleoperation can provide distinct benefits in applications requiring real-time human judgement and intuition. However, as robotic systems are increasingly becoming sophisticated and are performing more complex tasks, realizing these benefits requires new approaches to teleoperation. This paper introduces a novel haptic mediator interface for teleoperating mobile robotic platforms that have a variety of manipulators and functions. Identical master-slave bilateral teleoperation of the robotic manipulators is achieved by representing them in virtual reality and by allowing the operator to interact with them using a multipoint haptic device. The operator is also able to command motions to the mobile platform by using a novel haptic interaction metaphor rather than a separate dedicated input device. The presented interaction techniques enable the operator to perform a wide range of control functions and achieve functionality similar to that of conventional teleoperation schemes that use a single haptic interface. The mediator interface is presented, and important considerations such as workspace mapping and scaling are discussed. &copy; 2015 IEEE.<br /

    Multipoint haptic guidance for micrograsping systems

    Full text link
    The ability to perform accurate micromanipulation offers wide-reaching benefits and is of increasing interest to researchers. Recent research into microgripper, microtweezer, and microforcep systems contributes toward accurate micrograsping and manipulation. Despite these efforts, achieving adequate operator control remains a distinct research challenge. Haptic interfaces interact with the human\u27s haptic modality and offer the ability to enhance the operator\u27s controllability of micromanipulation systems. Our previous work introduced single-point haptic guidance to assist the operator during intracellular microinjection. This paper extends the approach to propose multipoint haptic guidance for micrograsping tasks. Accurate micrograsping is valuable in many applications, including microassembly and biomanipulation. A multipoint haptic gripper facilitates haptic interaction, and haptic guidance assists the operator in controlling systems suitable for micrograsping. Force fields are used to guide the operator to suitable grasp points on micrometer-sized objects and consist of attractive and repulsive forces. The ability of the force field to effectively assist the operator in grasping the cell is evaluated using a virtual environment. Evaluation results demonstrate the ability of the approach to significantly reduce participants\u27 average grasping error

    A haptic platform to enable fingertip grasping and manipulation

    Full text link
    Haptic technologies allow human users to haptically interact with virtual environments. Haptics has been employed in many application domains including operator training, virtual exploration and teleoperation. Currently, most commercially available haptic devices focus on a single point of haptic interaction. While single-point haptics have been successfully employed in many applications, they remain limited to particular types of haptic interaction. Multi-point haptic devices are a logical progression and facilitate a far wider range of interactions including object grasping, multi-finger object manipulation and size discrimination. The ability to effectively achieve such interactions offers significant benefits for many applications including virtual training, telesurgery and telemanipulation. In such applications, the ability to use multi-point haptic interactions can provide far more effective user interaction as well improved perception of the virtual environment

    Enabling multi-point haptic grasping in virtual environments

    Full text link
    Haptic interaction has received increasing research interest in recent years. Currently, most commercially available haptic devices provide the user with a single point of interaction. Multi-point haptic devices present a logical progression in device design and enable the operator to experience a far wider range of haptic interactions, particularly the ability to grasp via multiple fingers. This is highly desirable for various haptically enabled applications including virtual training, telesurgery and telemanipulation. This paper presents a gripper attachment which utilises two low-cost commercially available haptic devices to facilitate multi-point haptic grasping. It provides the ability to render forces to the user\u27s fingers independently and using Phantom Omni haptic devices offers several benefits over more complex approaches such as low-cost, reliability, and ease of programming. The workspace of the gripper attachment is considered and in order to haptically render the desired forces to the user\u27s fingers, kinematic analysis is discussed and necessary formulations presented. The integrated multi-point haptic platform is presented and exploration of a virtual environment using CHAI 3D is demonstrated.<br /

    A multi-point haptic platform for grasping and manipulating virtual objects

    Full text link
    This work presents a multi-point haptic platform that employs two Phantom Omni haptic devices. A gripper attachment connects to both devices and enables multi-point haptic grasping in virtual environments. In contrast to more complex approaches, this setup benefits from low-cost, reliability, and ease of programming while being capable of independently rendering forces to each of the user&rsquo;s fingertips. The ability to grasp with multiple points potentially lends itself to applications such as virtual training, telesurgery and telemanipulation
    corecore