437 research outputs found
Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives
The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed
Structure of quantum correlations in momentum space and off diagonal long range order in eta pairing and BCS states
The quantum states built with the eta paring mechanism i.e., eta pairing
states, were first introduced in the context of high temperature
superconductivity where they were recognized as important example of states
allowing for off-diagonal long-range order (ODLRO). In this paper we describe
the structure of the correlations present in these states when considered in
their momentum representation and we explore the relations between the quantum
bipartite/multipartite correlations exhibited in k space and the direct lattice
superconducting correlations. In particular, we show how the negativity between
paired momentum modes is directly related to the ODLRO. Moreover, we
investigate the dependence of the block entanglement on the choice of the modes
forming the block and on the ODLRO; consequently we determine the multipartite
content of the entanglement through the evaluation of the generalized "Meyer
Wallach" measure in the direct and reciprocal lattice. The determination of the
persistency of entanglement shows how the network of correlations depicted
exhibits a self-similar structure which is robust with respect to "local"
measurements. Finally, we recognize how a relation between the momentum-space
quantum correlations and the ODLRO can be established even in the case of BCS
states.Comment: 11 pages, 3 figure
NanoMIP-based solid phase extraction of fluoroquinolones from human urine: A proof-of-concept study
NanoMIPs that are prepared by solid phase synthesis have proven to be very versatile, but to date only limited attention has been paid to their use in solid phase extraction. Thus, since nanoMIPs show close similarities, in terms of binding behavior, to antibodies, it seems relevant to verify if it is possible to use them as mimics of the natural antibodies that are used in immunoextraction methods. As a proof-of-concept, we considered prepared nanoMIPs against fluoroquinolone ciprofloxacin. Several nanoMIPs were prepared in water with polymerization mixtures of different compositions. The polymer with the highest affinity towards ciprofloxacin was then grafted onto a solid support and used to set up a solid phase extraction–HPLC method with fluorescence detection, for the determination of fluoroquinolones in human urine. The method resulted in successful selection for the fluoroquinolone antibiotics, such that the nanoMIPs were suitable for direct extraction of the antibiotics from the urine samples at the µg mL−1 level. They required no preliminary treatment, except for a 1 + 9 (v/v) dilution with a buffer of pH 4.5 and they had good analyte recovery rates; up to 85% with precision in the range of 3 to 4.5%, without interference from the matrix. These experimental results demonstrate, for the first time, the feasibility of the use of nanoMIPs to develop solid phase extraction methods
- …