2 research outputs found

    Biodegradable Polymers for Medical Applications

    Get PDF
    Biodegradable polymers have a long history which, however, is difficult to be traced as some of them are natural products. The concept of synthetic biodegradable polymers, the topic of this special issue, was introduced in the 1980s. Since then the field has experienced a steady and stable growth as its outcomes are potentially relevant to the majority of population. This interdisciplinary field encompasses elements of materials science, biology, chemistry, medicine, tissue engineering, and others

    The Effect of Surface Substrate Treatments on the Bonding Strength of Aluminium Inserts with Glass-Reinforced Poly(phenylene) Sulphide

    No full text
    Materials composed of a polymer matrix reinforced with carbon/glass fibres providing lightweight and superior mechanical properties are widely used as structural components for automotive and aerospace applications. However, such parts need to be joined with various metal alloys to obtain better mechanical performance in many structural elements. Many studies have reported enhancements in polymer–metal bonding using adhesives, adhesive/rivet combined joints, and different surface treatments. This study investigated the influences of various surface treatments on the adhesion between glass-reinforced poly(phenylene) sulphide (PPS) and aluminium alloy during the injection over-moulding process. Adhesion strength was evaluated via the shear test. Correlations for the shear strength of the polymer–metal with different metal–substrate treatments were studied. Since the strongest bonding was attained in the treatment with the highest roughness, this value, as it determines the level of micromechanical interlocking of connected materials, seems to be a critical factor affecting the adhesion strength. Three-dimensional (3D) topographic images characterized with a 3D optical microscope indicated that there was a meaningful influence exerted by the interface topologies of the aluminium substrates used for the over-moulding process. The results further indicated that increases in a substrate’s surface energy in connection with atmospheric plasma treatments negatively influence the final level of the bonding mechanism
    corecore