29 research outputs found

    Dietary ω-3 fatty acid supplementation improves murine sickle cell bone disease and reprograms adipogenesis

    Get PDF
    Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)-supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention

    Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects

    Get PDF
    There is an urgent need to improve the prediction of fracture risk for cancer patients with bone metastases. Pathological fractures that result from these tumors frequently occur in the femur. It is extremely difficult to determine the fracture risk even for experienced physicians. Although evolving, fracture risk assessment is still based on inaccurate predictors estimated from previous retrospective studies. As a result, many patients are surgically over-treated, whereas other patients may fracture their bones against expectations.\ud \ud We mechanically tested ten pairs of human cadaveric femurs to failure, where one of each pair had an artificial defect simulating typical metastatic lesions. Prior to testing, finite element (FE) models were generated and computed tomography rigidity analysis (CTRA) was performed to obtain axial and bending rigidity measurements. We compared the two techniques on their capacity to assess femoral failure load by using linear regression techniques, Student's t-tests, the Bland–Altman methodology and Kendall rank correlation coefficients.\ud \ud The simulated FE failure loads and CTRA predictions showed good correlation with values obtained from the experimental mechanical testing. Kendall rank correlation coefficients between the FE rankings and the CTRA rankings showed moderate to good correlations. No significant differences in prediction accuracy were found between the two methods.\ud \ud Non-invasive fracture risk assessment techniques currently developed both correlated well with actual failure loads in mechanical testing suggesting that both methods could be further developed into a tool that can be used in clinical practice. The results in this study showed slight differences between the methods, yet validation in prospective patient studies should confirm these preliminary finding

    Legislative Documents

    No full text
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Alpha-tocopherol in intravenous lipid emulsions imparts hepatic protection in a murine model of hepatosteatosis induced by the enteral administration of a parenteral nutrition solution.

    No full text
    Intestinal failure-associated liver disease (IFALD) is a risk of parenteral nutrition (PN)-dependence. Intravenous soybean oil-based parenteral fat can exacerbate the risk of IFALD while intravenous fish oil can minimize its progression, yet the mechanisms by which soybean oil harms and fish oil protects the liver are uncertain. Properties that differentiate soybean and fish oils include α-tocopherol and phytosterol content. Soybean oil is rich in phytosterols and contains little α-tocopherol. Fish oil contains abundant α-tocopherol and little phytosterols. This study tested whether α-tocopherol confers hepatoprotective properties while phytosterols confer hepatotoxicity to intravenous fat emulsions. Utilizing emulsions formulated in the laboratory, a soybean oil emulsion (SO) failed to protect from hepatosteatosis in mice administered a PN solution enterally. An emulsion of soybean oil containing α-tocopherol (SO+AT) preserved normal hepatic architecture. A fish oil emulsion (FO) and an emulsion of fish oil containing phytosterols (FO+P) protected from steatosis in this model. Expression of hepatic acetyl CoA carboxylase (ACC) and peroxisome proliferator-activated receptor gamma (PPARγ), was increased in animals administered SO. ACC and PPARγ levels were comparable to chow-fed controls in animals receiving SO+AT, FO, and FO+P. This study suggests a hepatoprotective role for α-tocopherol in liver injury induced by the enteral administration of a parenteral nutrition solution. Phytosterols do not appear to compromise the hepatoprotective effects of fish oil

    A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor.

    No full text
    Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 μg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway

    Co-culture assays of human bronchial epithelial cells (HBEC) and human lung microvascular endothelial cells (HMVEC-L).

    No full text
    <p>VEGF<sub>165</sub> at 10 ng/mL activated HMVEC-L (A). HMVEC-L treated with VEGF<sub>165</sub> show upregulation of proteases such as cathepsin B and V, matrix metalloprotease (MMP)-7, CD10, and kallikrein 13 (B) as well as a more than 6-fold increase in HB-EGF concentration in the conditioned medium (C). HBEC treated directly with VEGF show no increase in proliferation (D). However, in a co-culture model with HMVEC-L (E), proliferation increases when HBEC is co-cultured with VEGF-treated HMVEC-L (F). When an HB-EGF neutralizing antibody is added to co-cultured HBEC (G), proliferation decreases at higher concentrations of the antibody (H). Activation of EGFR on co-cultured HBEC is confirmed to decrease in the presence of an HB-EGF neutralizing antibody (I-J).</p

    Morphometric analyses.

    No full text
    <p>Lungs of VEGF-treated mice demonstrate increased parenchymal volume (A) and a trend toward higher alveolar volume (B). Septal surface area (C) was higher in the VEGF group but there was no difference in mean septal thickness (D). VEGF-treated mice had increased total alveolar count (E). Data are expressed as mean ± SE.</p

    Lung tissue protein expression analyses.

    No full text
    <p>ELISA reveals increased VEGF levels in VEGF-treated lungs (A) on POD 4. However, quantitative polymerase chain reactions (qPCR) show no difference in mRNA transcript levels of VEGF, VEGFR1, or VEGFR2 between the two groups (B). Immunoblot demonstrates an increase in the levels of P-VEGFR2, VEGFR2, P-EGFR, EGFR, and heparin-binding EGF-like growth factor (HB-EGF) with VEGF treatment (C-D). Data are expressed as mean ± SE.</p
    corecore