120 research outputs found
Modeling the Effects of Duration and Size of the Control Zones on the Consequences of a Hypothetical African Swine Fever Epidemic in Denmark
African swine fever (ASF) is a notifiable infectious disease. The disease is endemic in certain regions in Eastern Europe constituting a risk of ASF spread toward Western Europe. Therefore, as part of contingency planning, it is important to continuously explore strategies that can effectively control an epidemic of ASF. A previously published and well documented simulation model for ASF virus spread between herds was used to examine the epidemiologic and economic impacts of the duration and size of the control zones around affected herds. In the current study, scenarios were run, where the duration of the protection and surveillance zones were reduced from 50 and 45 days to 35 and 25 days or to 35 and 25 days, respectively. These scenarios were run with or without enlargement of the surveillance zone around detected herds from 10 to 15 km. The scenarios were also run with only clinical or clinical and serological surveillance of herds within the zones. Sensitivity analysis was conducted on influential input parameters in the model. The model predicts that reducing the duration of the protection and surveillance zones has no impact on the epidemiological consequences of the epidemics, while it may result in a substantial reduction in the total economic losses. In addition, the model predicts that increasing the size of the surveillance zone from 10 to 15 km may reduce both the epidemic duration and the total economic losses, in case of large epidemics. The ranking of the control strategies by the total costs of the epidemics was not influenced by changes of input parameters in the sensitivity analyses
Stratigraphic reconstruction of the VĂti breccia at Krafla volcano (Iceland): insights into pre-eruptive conditions priming explosive eruptions in geothermal areas
Krafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the MĂ˝vatn (1724‒1729) and Krafla Fires (1975-1984). The MĂ˝vatn Fires opened with a steam-driven eruption that produced the VĂti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting VĂti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from VĂti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the VĂti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the VĂti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone \textquotedblcap\textquotedbl via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (\~ 200~m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex \textquotedblcap\textquotedbl. At the same time, deep-rooted explosions (\~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s). Supplementary Information The online version contains supplementary material available at 10.1007/s00445-021-01502-y
Resource Estimations in Contingency Planning for Foot-and-Mouth Disease
Preparedness planning for a veterinary crisis is important to be fast and effective in the eradication of disease. For countries with a large export of animals and animal products, each extra day in an epidemic will cost millions of Euros due to the closure of export markets. This is important for the Danish husbandry industry, especially the swine industry, which had an export of €4.4 billion in 2012. The purposes of this project were to (1) develop an iterative tool with the aim of estimating the resources needed during an outbreak of foot-and-mouth disease (FMD) in Denmark, (2) identify areas, which can delay the control of the disease. The tool developed should easily be updated, when knowledge is gained from other veterinary crises or during an outbreak of FMD. The stochastic simulation model DTU-DADS was used to simulate spread of FMD in Denmark. For each task occurring during an epidemic of FMD, the time and personnel needed per herd was estimated by a working group with expertise in contingency and crisis management. By combining this information, an iterative model was created to calculate the needed personnel on a daily basis during the epidemic. The needed personnel was predicted to peak within the first week with a requirement of approximately 123 (65–175) veterinarians, 33 (23–64) technicians, and 36 (26–49) administrative staff on day 2, while the personnel needed in the Danish Emergency Management Agency (responsible for the hygiene barrier and initial cleaning and disinfection of the farm) was predicted to be 174 (58–464), mostly recruits. The time needed for surveillance visits was predicted to be the most influential factor in the calculations. Based on results from a stochastic simulation model, it was possible to create an iterative model to estimate the requirements for personnel during an FMD outbreak in Denmark. The model can easily be adjusted, when new information on resources appears from management of other crisis or from new model runs
A hereditary disposition for bovine peripheral nerve sheath tumors in Danish Holstein cattle
BACKGROUND: Peripheral nerve sheath tumors (PNSTs) are frequently found in Danish cattle at slaughter. Bovine PNSTs share several gross and histopathological characteristics with the PNSTs in humans with heritable neurofibromatosis syndromes. The aim of the present study was to investigate a possible hereditary disposition to PNSTs in dairy cattle by statistical analysis performed on data from 567 cattle with PNSTs. Furthermore, a preliminary genome-wide association study (GWAS) was performed on DNA isolated from 28 affected and 28 non-affected Holstein cows to identify loci in the bovine genome involved in the development of PNSTs. RESULTS: PNSTs were significantly more common in the Danish Holstein breed than in other breeds with 0.49% of Danish Holsteins slaughtered during an eight-year-period having PNSTs. PNSTs also occurred significantly more frequently in the offspring of some specific Holstein sires. Examination of three generation pedigrees showed that these sires were genetically related through a widely used US Holstein sire. The PNSTs included in GWAS were histologically classified as neurofibroma-schwannoma (43%), schwannoma (36%) and neurofibroma (21%) and derived from Holstein cows with multiple PNSTs. A single SNP on chromosome 27 reached genome-wide significance. CONCLUSIONS: Gross and histological characteristics of bovine PNSTs are comparable to PNSTs in humans (schwannomatosis). Danish Holsteins are genetically disposed to develop PNSTs but the examined materials are insufficient to allow determination of the mode of inheritance
- …