3,419 research outputs found
TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?
Since the proposition of Quality of Service architectures by the IETF, the
interaction between TCP and the QoS services has been intensively studied. This
paper proposes to look forward to the results obtained in terms of TCP
throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service
and to present an overview of the different proposals to solve the problem. It
has been demonstrated that the standardized IETF DiffServ conditioners such as
the token bucket color marker and the time sliding window color maker were not
good TCP traffic descriptors. Starting with this point, several propositions
have been made and most of them presents new marking schemes in order to
replace or improve the traditional token bucket color marker. The main problem
is that TCP congestion control is not designed to work with the AF service.
Indeed, both mechanisms are antagonists. TCP has the property to share in a
fair manner the bottleneck bandwidth between flows while DiffServ network
provides a level of service controllable and predictable. In this paper, we
build a classification of all the propositions made during these last years and
compare them. As a result, we will see that these conditioning schemes can be
separated in three sets of action level and that the conditioning at the
network edge level is the most accepted one. We conclude that the problem is
still unsolved and that TCP, conditioned or not conditioned, remains
inappropriate to the DiffServ/AF service
The First Year of the Large Hadron Collider: A Brief Review
The first year of LHC data taking provided an integrated luminosity of about
35/pb in proton-proton collisions at sqrt(s)=7 TeV. The accelerator and the
experiments have demonstrated an excellent performance. The experiments have
obtained important physics results in many areas, ranging from tests of the
Standard Model to searches for new particles. Among other results the physics
highlights have been the measurements of the W-, Z-boson and t t-bar production
cross-sections, improved limits on supersymmetric and other hypothetical
particles and the observation of jet-quenching, elliptical flow and J/Psi
suppression in lead-lead collisions at sqrt(sNN) = 2.76 TeV.Comment: 11 pages, 9 figures, invited brief review for Mod. Phys. Lett.
Test results of the front-end system for the Silicon Drift Detectors of ALICE
The front-end system of the Silicon Drift Detectors (SDDs) of the ALICE experiment is made of two ASICs. The first chip performs the preamplification, temporary analogue storage and analogue-to-digital conversion of the detector signals. The second chip is a digital buffer that allows for a significant reduction of the connection from the front-end module to the outside world. In this paper, the results achieved on the first complete prototype of the front-end system for the SDDs of ALICE are presented
Arsenic movement and fractionation in agricultural soils which received wastewater from an adjacent industrial site for 50 years
Arsenic (As) is an element with important environmental and human health implications due to its toxic properties. It is naturally occurring since it is contained in minerals, but it can also be enriched and distributed in the environment by anthropogenic activities. This paper reports on the historic As contamination of agricultural soils in one of the most important national relevance site for contamination in Italy, the so-called SIN Brescia-Caffaro, in the city of Brescia, northern Italy. These agricultural areas received As through the use of irrigation waters from wastewater coming from a factory of As-based pesticides (lead and calcium arsenates, sodium arsenite). Pesticide production started in 1920 and ended in the '70. Concentrations in the areas are generally beyond the legal threshold values for different soil uses and are up to >200 mg/kg. Arsenic contamination was studied to assess the long-time trend and the dynamics related to the vertical movement of As down to 1 m depth and its horizontal diffusion with surface irrigation in the entire field. Arsenic fractionation analysis (solid phase speciation by sequential extraction procedure) was also performed on samples collected from these areas and employed in greenhouse experiments with several plant species to evaluate the long-term contamination and the role of plant species in modifying As availability in soil. The results of this work can help in the evaluation of the conditions controlling the vertical transfer of As towards surface aquifers, the bioaccumulation likelihood in the agricultural food chain and the selection of sustainable remediation techniques such as phytoextraction
Convex Structuring Element Decomposition for Single Scan Binary Mathematical Morphology
International audienceThis paper presents a structuring element decomposition method and a corresponding morphological erosion algorithm able to compute the binary erosion of an image using a single regular pass whatever the size of the convex structuring element. Similarly to classical dilation-based methods, the proposed decomposition is iterative and builds a growing set of structuring elements. The novelty consists in using the set union instead of the Minkowski sum as the elementary structuring element construction operator. At each step of the construction, already-built elements can be joined together in any combination of translations and set unions. There is no restrictions on the shape of the structuring element that can be built. Arbitrary shape decompositions can be obtained with existing genetic algorithms with an homogeneous construction method. This paper, however, addresses the problem of convex shape decomposition with a deterministic method
Performance of upstream interaction region detectors for the FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (â2Ï/ âΞâE) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 ÎŒm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania)
Genomic segmental duplications on the basis of the t(9;22) rearrangement in chronic myeloid leukemia
n/
- âŠ