88 research outputs found

    Using a novel biologging approach to assess how different handling practices influence the post-release behaviour of Northern Pike across a wide range of body sizes

    Get PDF
    There is a growing body of research focused on how angled fish respond to catch-and-release (C&R). However, most of those studies do not span a wide range of body sizes for the targeted species. Physical injury and physiological responses to C&R can be size-dependent, and methods used for landing fish of different sizes vary. As such, studying the response to C&R across a range of fish sizes may help inform best practices that improve outcomes for released fish. Northern Pike (Esox lucius) widely ranges in body size. Anglers may land them by hand, cradle, or net, and they are often released voluntarily or to comply with regulations. We angled 25 Northern Pike (total length 620–1030 mm) from one population and recorded fight, handling, and unhooking times across landing methods (i.e., hand, cradle, net). Prior to release, a pop-off biologging package was temporarily affixed to each fish to monitor locomotor activity, depth, and water temperature during a 12-h period post-release to understand how the interaction of landing method and body size influenced post-release behaviour and short-term fate. Fight and handling time increased with increasing body size. Northern Pike landed with a cradle or net had shorter fight times but longer handling times, compared to fish landed by hand. Post-release locomotor activity was greater for larger fish and those landed with a net. Fish 775mm landed by hand had reduced locomotor activity compared to fish landed with a net. There was no post-release mortality observed. Collectively, anglers should use a net for Northern Pike >775 mm to avoid long fight times and reduce post-release exhaustion, but also attempt to reduce the extent of handling associated with fish landed by net

    Positive interspecific associations consistent with social information use shape juvenile fish assemblages

    Get PDF
    Social information obtained from heterospecifics can enhance individual fitness by reducing environmental uncertainty, making it an important driver of mixed-species grouping behavior. Heterospecific groups are well documented among fishes, yet are notably more prevalent among juveniles than more advanced life stages, implying that the adaptive value of joining other species is greater during this developmental period. We propose this phenomenon can be explained by the heightened ecological relevance of heterospecifically produced cues pertaining to predation risk and or resources, as body-size uniformity inherent in early ontogeny yields greater overlap in predator and prey guild membership across juveniles of disparate taxa. To evaluate the putative role of information in shaping juvenile fish assemblages, we employed a joint species distribution model (JSDM), identifying nonrandom relationships among fishes collected in 785 seine hauls within the shallow littoral zones of a subtropical island. After accounting for species-environment relationships, which explained 39% of observed covariation in the abundance of 11 taxa, we detected high rates of positive association (84% of significant correlations) predominantly between mutual foraging guild members, consistent with assemblage patterns predicted to evolve under widespread interspecific information use. Affiliations occurred primarily between species characterized by neutral (i.e., noninteracting) or negative (i.e., predator-prey) relationships in later life stages, supporting the notion that heightened niche overlap due to body size homogeneity acted to increase the pertinence of information among juveniles. Taxa exerted varying degrees of influence on assemblage structure; however Eucinostomus spp., a gregarious generalist with exceptional information-production potential, had an effect several times that of all other species combined, further evidencing the likely role of information in motivating observed relationships. Co-occurrence and qualitative behavioral data inferred from remote underwater video surveys reinforced these conclusions. Collectively, these results suggest that positive interactions linked to information exchange can be among the principal factors organizing juvenile fish assemblages at local scales, highlighting the role of ontogeny in mediating the relevance and exploitation of information across speciesFunding from the Bonefish & Tarpon Trust, UMass Intercampus Marine Science Graduate Program, and the Department of Environmental Conservation at the University of Massachusetts Amherst. A. Danylchuk was supported the National Institute of Food & Agriculture, U.S. Department of Agriculture, the Massachusetts Agricultural Experiment Station, and Department of Environmental Conservation and is also a Bonefish & Tarpon Trust Research Fellow

    Substantial impacts of subsistence fishing on the population status of an Endangered reef predator at a remote coral atoll

    Get PDF
    Napoleon wrasse Cheilinus undulatus has declined drastically throughout most of its range, owing, in large part, to overexploitation. In Anaa, French Polynesia, the species is harvested as part of the subsistence catch by fishers using rockpile traps, spearguns, handmade harpoons, and baited handlines. We sampled 70 Napoleon wrasse captured by artisanal fishers of Anaa between 2015 and 2018 to assess the status of this population, and we applied data-poor fisheries models to assess the stock status of this iconic reef predator. The species was determined to be overexploited at a rate of 0.82 based on values of natural (0.14; Hoenig method) and fishing (0.58; difference of total and natural mortality) mortality as components of total mortality (0.72; Beverton-Holt estimation). The left-skewed length distribution (mean = 36 ± 13 cm SL) suggested an under-representation of large adults in the population, which would predominantly be terminal males in this sequentially hermaphroditic protogynous fish. This was not considered to be reflective of poor sel

    Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic

    Get PDF
    Since the 1970s, the magnitude of turtle cold-stun strandings have increased dramatically within the northwestern Atlantic. Here, we examine oceanic, atmospheric, and biological factors that may affect the increasing trend of cold-stunned Kemp’s ridleys in Cape Cod Bay, Massachusetts, United States of America. Using machine learning and Bayesian inference modeling techniques, we demonstrate higher cold-stunning years occur when the Gulf of Maine has warmer sea surface temperatures in late October through early November. Surprisingly, hatchling numbers in Mexico, a proxy for population abundance, was not identified as an important factor. Further, using our Bayesian count model and forecasted sea surface temperature projections, we predict more than 2,300 Kemp’s ridley turtles may cold-stun annually by 2031 as sea surface temperatures continue to increase within the Gulf of Maine. We suggest warmer sea surface temperatures may have modified the northerly distribution of Kemp’s ridleys and act as an ecological bridge between the Gulf Stream and nearshore waters. While cold-stunning may currently account for a minor proportion of juvenile mortality, we recommend continuing efforts to rehabilitate cold-stunned individuals to maintain population resiliency for this critically endangered species in the face of a changing climate and continuing anthropogenic threats

    Space Use and Relative Habitat Selection for Immature Green Turtles Within a Caribbean Marine Protected Area

    Get PDF
    Background A better understanding of sea turtle spatial ecology is critical for the continued conservation of imperiled sea turtles and their habitats. For resource managers to develop the most effective conservation strategies, it is especially important to examine how turtles use and select for habitats within their developmental foraging grounds. Here, we examine the space use and relative habitat selection of immature green turtles (Chelonia mydas) using acoustic telemetry within the marine protected area, Buck Island Reef National Monument (BIRNM), St. Croix, United States Virgin Islands. Results Space use by turtles was concentrated on the southern side of Buck Island, but also extended to the northeast and northwest areas of the island, as indicated by minimum convex polygons (MCPs) and 99%, 95%, and 50% kernel density estimations (KDEs). On average space use for all categories was \u3c 3 km2 with mean KDE area overlap ranging from 41.9 to 67.7%. Cumulative monthly MCPs and their proportions to full MCPs began to stabilize 3 to 6 detection months after release, respectively. Resource selection functions (RSFs) were implemented using a generalized linear mixed effects model with turtle ID as the random effect. After model selection, the accuracy of the top model was 77.3% and showed relative habitat selection values were highest at shallow depths, for areas in close proximity to seagrass, and in reef zones for both day and night, and within lagoon zones at night. The top model was also extended to predict across BIRNM at both day and night. Conclusion More traditional acoustic telemetry analyses in combination with RSFs provide novel insights into animal space use and relative resource selection. Here, we demonstrated immature green turtles within the BIRNM have small, specific home ranges and core use areas with temporally varying relative selection strengths across habitat types. We conclude the BIRNM marine protected area is providing sufficient protection for immature green turtles, however, habitat protection could be focused in both areas of high space use and in locations where high relative selection values were determined. Ultimately, the methodologies and results presented here may help to design strategies to expand habitat protection for immature green turtles across their greater distribution

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation

    The future of recreational fisheries: Advances in science, monitoring, management, and practice

    Get PDF
    Recreational fisheries (RF) are complex social-ecological systems that play an important role in aquatic environments while generating significant social and economic benefits around the world. The nature of RF is diverse and rapidly evolving, including the participants, their priorities and behaviors, and the related ecological impacts and social and economic benefits. RF can lead to negative ecological impacts, particularly through overexploitation of fish populations and spread of non-native species and genotypes through stocking. Hence, careful management and monitoring of RF is essential to sustain these ecologically and socioeconomically important resources. This special issue on recreational fisheries contains diverse research, syntheses, and perspectives that highlight the advances being made in RF research, monitoring, management, and practice, which we summarize here. Co-management actions are rising, often involving diverse interest groups including government and non-government organizations; applying collaborative management practices can help balance social and economic benefits with conservation targets. Technological and methodological advances are improving the ability to monitor biological, social, and economic dynamics of RF, which underpin the ability to maximize RF benefits through management actions. To ensure RF sustainability, much research focuses on the ecological aspects of RF, as well as the development of management and angling practices that reduce negative impacts on fish populations. For example, angler behavior can be influenced to conform to conservation-minded angling practices through regulations, but is often best accomplished through growing bottom-up social change movements. Anglers can also play an important role in fisheries monitoring and conservation, including providing data on fish abundance and assemblages (i.e., citizen science). The increasing impacts that growing human populations are having on the global environment are threatening many of the natural resources and ecosystem services they provide, including valuable RF. However, with careful development of research initiatives, monitoring and management, sustainable RF can generate positive outcomes for both society and natural ecosystems and help solve allocation conflicts with commercial fisheries and conservation
    • …
    corecore