14 research outputs found
Human Skeletal Muscle Feed Arteries: Evidence of Regulatory Potential
AIM: Recently, it has been recognized that human skeletal muscle feed arteries can be harvested during exploratory surgery for melanoma. This approach provides vessels for in vitro study from a wide spectrum of relatively healthy humans. Although, the regulatory role of skeletal muscle feed arteries in rodent models has been documented, whether such vessels in humans possess this functionality is unknown.
METHODS: Therefore, skeletal muscle feed arteries (~950 μm OD) from 10 humans (48 ± 4, 27-64 years) were studied using pressure myography. Vessel function was assessed using potassium chloride (KCl), phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) concentration-response curves (CRCs) to characterize non-receptor and receptor-mediated vasoconstriction as well as endothelium-dependent and independent vasodilation respectively. To understand the physiological relevance of the diameter changes as a result of pharmacological stimulation, the estimated conductance ratio (CR) was calculated.
RESULTS: Vessel function protocols revealed significant vasoconstriction in response to PE and KCl (35 ± 6; 43 ± 9%vasoconstriction, respectively) and significant vasodilation with ACh and SNP (85 ± 7; 121 ± 17% vasodilation, respectively). Both PE and KCl significantly reduced the CR (0.26 ± 0.05 and 0.23 ± 0.07, respectively), whereas ACh and SNP increased the CR (2.56 ± 0.10 and 5.32 ± 1.3, respectively).
CONCLUSION: These novel findings provide evidence that human skeletal muscle feed arteries are capable of generating significant diameter changes that would translate into significant changes in vascular conductance. Thus, human skeletal muscle feed arteries likely play a significant role in regulating vascular conductance and subsequently blood flow in vivo
α1-Adrenergic Responsiveness in Human Skeletal Muscle Feed Arteries: The Impact of Reducing Extracellular PH
Graded exercise results not only in the modulation of adrenergic mediated smooth muscle tone and a preferential increase in blood flow to the active skeletal muscle termed \u27functional sympatholysis\u27, but is also paralleled by metabolically induced reductions in pH. We therefore sought to determine whether pH attenuates α(1)-adrenergic receptor sensitivity in human feed arteries. Feed arteries (560 ± 31 μm i.d.) were harvested from 24 humans (55 ± 4 years old) and studied using the isometric tension technique. Vessel function was assessed using KCl, phenylephrine (PE), ACh and sodium nitroprusside (SNP) concentration-response curves to characterize non-receptor-mediated and receptor-mediated vasocontraction, as well as endothelium-dependent and -independent vasorelaxation, respectively. All concentration-response curves were obtained from (originally contiguous) vessel rings in separate baths with a pH of 7.4, 7.1, 6.8 or 6.5. Reduction of the pH, via HCl, reduced maximal PE-induced vasocontraction (pH 7.4 = 85 ± 19, pH 7.1 = 57 ± 16, pH 6.8 = 34 ± 15 and pH 6.5 = 16 ± 5% KCl(max)), which was partly due to reduced smooth muscle function, as assessed by KCl (pH 7.4 = 88 ± 13, pH 7.1 = 67 ± 8, pH 6.8 = 67 ± 9 and pH 6.5 = 58 ± 8% KCl(max)). Graded acidosis had no effect on maximal vasorelaxation. In summary, these data reveal that reductions in extracellular pH attenuate α(1)-mediated vasocontraction, which is partly explained by reduced smooth muscle function, although vasorelaxation in response to ACh and SNP remained intact. These findings support the concept that local acidosis is likely to contribute to functional sympatholysis and exercise hyperaemia by opposing sympathetically mediated vasoconstriction while not impacting vasodilatation
Human Skeletal Muscle Feed Arteries Studied in Vitro: The Effect of Temperature on α(1)-Adrenergic Responsiveness
Heat and cold exposure can decrease and increase total peripheral resistance, respectively, in humans. With unique access to human skeletal muscle feed arteries, we sought both to characterize these vessels and to determine the interaction between temperature and α(1)-adrenergic receptor responsiveness. We hypothesized that α(1)-mediated vasocontraction of human feed arteries would be attenuated in response to 39 or 35°C. Skeletal muscle feed arteries were harvested from thirty-two human volunteers and studied using isometric techniques. Vessel function was assessed using KCl, sodium nitroprusside (SNP), phenylephrine (PE) and ACh dose-response curves to characterize non-receptor- and receptor-mediated vasocontraction and vasorelaxation. Single doses of PE (1 mm) and KCl (100 mm) were administered at 37°C and then, in a balanced design, repeated at both 35 and 39°C. The KCl and PE dose-response curves elicited significant vasocontraction (2009 ± 407 and 1974 ± 508 mg developed tension, respectively), whereas SNP and ACh induced the expected vasorelaxation (102 ± 6 and 73 ± 10% relaxation, respectively). Altering the temperature had no effect on inherent smooth muscle function (KCl response), but both a reduction (35°C) and an increase in temperature (39°C) decreased the vasocontractile response to 1 mm PE (37°C, 1478 ± 338 mg; 35°C, 546 ± 104 mg; and 39°C, 896 ± 202 mg; P \u3c 0.05) or across PE dose (P \u3c 0.05, 35 and 39 versus 37°C). Despite clear heterogeneity between both the human volunteers and the feed arteries themselves, this novel approach to the procurement of human vessels revealed a robust \u27inverted U\u27 response to altered temperature, such that α(1)-mediated vasocontraction was attenuated with either warming or cooling
Heat and α1-Adrenergic Responsiveness in Human Skeletal Muscle Feed Arteries: The Role of Nitric Oxide
Increased local temperature exerts a sympatholytic effect on human skeletal muscle feed arteries. We hypothesized that this attenuated α(1)-adrenergic receptor responsiveness may be due to a temperature-induced increase in nitric oxide (NO) bioavailability, thereby reducing the impact of the α(1)-adrenergic receptor agonist phenylephrine (PE). Thirteen human skeletal muscle feed arteries were harvested, and wire myography was used to generate PE concentration-response curves at 37 °C and 39 °C, with and without the NO synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA). A subset of arteries (n = 4) were exposed to 37 °C or 39 °C, and the protein content of endothelial NOS (eNOS) and α(1)-adrenergic receptors was determined by Western blot analysis. Additionally, cultured bovine endothelial cells were exposed to static or shear stress conditions at 37 °C and 39 °C and assayed for eNOS activation (phosphorylation at Ser(1177)), eNOS expression, and NO metabolites [nitrate + nitrite (NOx)]. Maximal PE-induced vasocontraction (PE(max)) was lower at 39 °C than at 37 °C [39 ± 10 vs. 84 ± 30% maximal response to 100 mM KCl (KCl(max))]. NO blockade restored vasocontraction at 39 °C to that achieved at 37 °C (80 ± 26% KCl(max)). Western blot analysis of the feed arteries revealed that heating increased eNOS protein, but not α(1)-adrenergic receptors. Heating of bovine endothelial cells resulted in greater shear stress-induced eNOS activation and NOx production. Together, these data reveal for the first time that, in human skeletal muscle feed arteries, NO blockade can restore the heat-attenuated α(1)-adrenergic receptor-mediated vasocontraction and implicate endothelium-derived NO bioavailability as a major contributor to heat-induced sympatholysis. Consequently, these findings highlight the important role of vasodilators in modulating the vascular response to vasoconstrictors
Age-Related Arterial Telomere Uncapping and Senescence is Greater in Women Compared with Men
Telomere uncapping increases with advancing age in human arteries and this telomere uncapping is associated with increased markers of senescence, independent of mean telomere length. However, whether there are sex specific differences in arterial telomere uncapping is unknown. We found that telomere uncapping (serine 139 phosphorylated histone γ-H2A.X in telomeres) in arteries was ~2.5 fold greater in post-menopausal women (n=17, 63±2 yrs) compared with premenopausal women (n=11, 30±2 yrs, p=0.02), while there was only a trend towards greater telomere uncapping in older men (n=26, 66±2 yrs) compared with young men (n=11, 31±2, p=0.11). Senescence markers, p53 bound to the p21 gene promoter and p21gene expression, were 3-4 fold greater in post-menopausal compared with premenopausal women (p=0.01-0.02), but only 1.5-2 fold greater in older compared with young men (p=0.02-0.08). Blood glucose was related to telomere uncapping in women, while systolic blood pressure, pulse pressure and serum creatinine were related to telomere uncapping in men. Mean arterial telomere length decreased similarly in women and men with age (
Role of Arterial Telomere Dysfunction in Hypertension: Relative Contributions of Telomere Shortening and Telomere Uncapping
OBJECTIVE: Telomere shortening in arteries could lead to telomere uncapping and cellular senescence, which in turn could promote the development of hypertension.
METHODS AND RESULTS: To assess the novel role of arterial telomere dysfunction in hypertension, we compared mean telomere length (qPCR), telomere uncapping (serine 139 phosphorylated histone γ-H2A.X (γ-H2) localized to telomeres: ChIP), and tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence (P53 bound to P21 gene promoter: ChIP) in arteries from 55 age-matched hypertensive and nonhypertensive individuals. Arterial mean telomere length was not different in hypertensive patients compared with nonhypertensive individuals (P = 0.29). Arterial telomere uncapping and P53/P21-induced senescence were two-fold greater in hypertensive patients compared with nonhypertensive individuals (P = 0.04 and P = 0.02, respectively). Arterial mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence (r = -0.02, P = 0.44 and r = 0.01, P = 0.50, respectively), but telomere uncapping was a highly influential covariate for the hypertension group difference in P53/P21-induced senescence (r = 0.62, P \u3c 0.001, η(p)(2) = 0.35). Finally, telomere uncapping was a significant predictor of hypertension status (P = 0.03), whereas mean telomere length was not (P = 0.68).
CONCLUSION: Collectively, these findings demonstrate that arterial telomere uncapping and P53/P21-induced senescence are linked to hypertension independently of mean telomere length, and telomere uncapping influences hypertension status more than mean telomere length
Impact of Age on the Vasodilatory Function of Human Skeletal Muscle Feed Arteries
Although advancing age is often associated with attenuated skeletal muscle blood flow and skeletal muscle feed arteries (SMFAs) have been recognized to play a regulatory role in the vasculature, little is known about the impact of age on the vasodilatory capacity of human SMFAs. Therefore, endothelium-dependent and -independent vasodilation were assessed in SMFAs (diameter: 544 ± 63 μm) obtained from 24 (equally represented) young (33 ± 2 yr) and old (71 ± 2 yr) subjects in response to three stimuli: 1) flow-induced shear stress, 2) ACh, and 3) sodium nitropusside (SNP). Both assessments of endothelium-dependent vasodilation, flow (young subjects: 68 ± 1% and old subjects: 32 ± 7%) and ACh (young subjects: 92 ± 3% and old subjects: 73 ± 4%), were significantly blunted (P \u3c 0.05) in SMFAs of old compared with young subjects, with no such age-related differences in endothelium-independent vasodilation (SNP). In response to an increase in flow-induced shear stress, vasodilation kinetics (time constant to reach 63% of the amplitude of the response: 55 ± 1 s in young subjects and 92 ± 7 s in old subjects) and endothelial nitric oxide synthase (eNOS) activation (phospho-eNOS(s1177)/total eNOS: 1.0 ± 0.1 in young subjects and 0.2 ± 0.1 in old subjects) were also significantly attenuated in old compared with young subjects (P \u3c 0.05). Furthermore, the vessel superoxide concentration was greater in old subjects (old subjects: 3.9 ± 1.0 area under curve/mg and young subjects: 1.7 ± 0.1 area under the curve/mg, P \u3c 0.05). These findings reveal that the endothelium-dependent vasodilatory capacity, including vasodilation kinetics but not smooth muscle function, of human SMFAs is blunted with age and may be due to free radicals. Given the potential regulatory role of SMFAs in skeletal muscle blood flow, these findings may explain, at least in part, the often observed attenuated perfusion of skeletal muscle with advancing age that may contribute to exercise intolerance in the elderly
α1- and α2-Adrenergic Responsiveness in Human Skeletal Muscle Feed Arteries: The Role of TRPV Ion Channels in Heat-Induced Sympatholysis
The purpose of this study was to determine if heat inhibits α2-adrenergic vasocontraction, similarly to α1-adrenergic contraction, in isolated human skeletal muscle feed arteries (SMFA) and elucidate the role of the temperature-sensitive vanilloid-type transient receptor potential (TRPV) ion channels in this response. Isolated SMFA from 37 subjects were studied using wire myography. α1 [Phenylephrine (PE)]- and α2[dexmedetomidine (DEX)]-contractions were induced at 37 and 39°C with and without TRPV family and TRPV4-specific inhibition [ruthenium red (RR) and RN-1734, respectively]. Endothelial function [acetylcholine (ACh)] and smooth muscle function [sodium nitroprusside (SNP) and potassium chloride (KCl)] were also assessed under these conditions. Heat and TRPV inhibition was further examined in endothelium-denuded arteries. Contraction data are reported as a percentage of maximal contraction elicited by 100 mM KCl (LTmax). DEX elicited a small and variable contractile response, one-fifth the magnitude of PE, which was not as clearly attenuated when heated from 37 to 39°C (12 ± 4 to 6 ± 2% LTmax; P = 0.18) as were PE-induced contractions (59 ± 5 to 24 ± 4% LTmax; P \u3c 0.05). Both forms of TRPV inhibition restored PE-induced contraction at 39°C (P \u3c 0.05) implicating these channels, particularly the TRPV4 channels, in the heat-induced attenuation of α1-adrenergic vasocontraction. TRPV inhibition significantly blunted ACh relaxation while denudation prevented heat-induced sympatholysis without having an additive effect when combined with TRPV inhibition. In conclusion, physiological increases in temperature elicit a sympatholysis-like inhibition of α1-adrenergic vasocontraction in human SMFA that appears to be mediated by endothelial TRPV4 ion channels
Cardiac, Skeletal, and Smooth Muscle Mitochondrial Respiration: Are All Mitochondria Created Equal?
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P \u3c 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P \u3c 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P \u3c 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production