734 research outputs found
Wetting layer states of InAs/GaAs self-assembled quantum dot structures. Effect of intermixing and capping layer
The authors present a modulated reflectivity study of the wetting layer (WL) states in mol. beam epitaxy grown InAs/GaAs quantum dot (QD) structures designed to emit light in the 1.3-1.5 micro m range. A high sensitivity of the technique has allowed the observation of all optical transitions in the QD system, including low oscillator strength transitions related to QD ground and excited states, and the ones connected with the WL quantum well (QW). The support of WL content profiles, detd. by transmission electron microscopy, has made it possible to analyze in detail the real WL QW confinement potential which was then used for calcg. the optical transition energies. In spite of a very effective WL QW intermixing, mainly due to the Ga-In exchange process (causing the redn. of the max. indium content in the WL layer to about 35% from nominally deposited InAs), the transition energies remain almost unaffected. The latter effect could be explained in effective mass envelope function calcns. taking into account the intermixing of the QW interfaces described within the diffusion model. We have followed the WL-related transitions of 2 closely spaced QD layers grown at different temps., as a function of the In content in the capping layer. Changing the capping layer from pure GaAs to In0.236Ga0.764As has no significant influence on the compn. profile of the WL itself and the WL QW transitions can be usually interpreted properly when based on the cap-induced modification of the confinement potential within a squarelike QW shape approxn. However, some of the obsd. features could be explained only after taking into consideration the effects of intermixing and InGaAs cap layer decompn. [on SciFinder (R)
Evidence of Josephson-coupled superconducting regions at the interfaces of Highly Oriented Pyrolytic Graphite
Transport properties of a few hundreds of nanometers thick (in the graphene
plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have
been investigated. Current-Voltage characteristics as well as the temperature
dependence of the voltage at different fixed input currents provide evidence
for Josephson-coupled superconducting regions embedded in the internal
two-dimensional interfaces, reaching zero resistance at low enough
temperatures. The overall behavior indicates the existence of superconducting
regions with critical temperatures above 100 K at the internal interfaces of
oriented pyrolytic graphite.Comment: 6 Figures, 5 page
Optical and electronic properties of GaAs-based structures with columnar quantum dots
The electronic properties of a structure with columnar quantum dots obtained by close stacking of InAs submonolayers were studied by contactless electroreflectance (CER) and photoluminescence. These dots have an almost ideally rectangular cross section and uniform compn., which is promising for polarization independent gain. After energy level calcns. in the effective mass approxn. using compn. profiles obtained from cross-sectional TEM the part of the CER spectrum related to the 2-dimensional surrounding layer was explained and single heavy-hole-like and light-hole-like transitions related to the columnar dots identified, due to a single electron state confined in a shallow in-plane potential. [on SciFinder (R)
Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV
The neutron capture cross section of 204Pb has been measured at the CERN
n_TOF installation with high resolution in the energy range from 1 eV to 440
keV. An R-matrix analysis of the resolved resonance region, between 1 eV and
100 keV, was carried out using the SAMMY code. In the interval between 100 keV
and 440 keV we report the average capture cross section. The background in the
entire neutron energy range could be reliably determined from the measurement
of a 208Pb sample. Other systematic effects in this measurement could be
investigated and precisely corrected by means of detailed Monte Carlo
simulations. We obtain a Maxwellian average capture cross section for 204Pb at
kT=30 keV of 79(3) mb, in agreement with previous experiments. However our
cross section at kT=5 keV is about 35% larger than the values reported so far.
The implications of the new cross section for the s-process abundance
contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
Resonance capture cross section of 207Pb
The radiative neutron capture cross section of 207Pb has been measured at the
CERN neutron time of flight installation n_TOF using the pulse height weighting
technique in the resolved energy region. The measurement has been performed
with an optimized setup of two C6D6 scintillation detectors, which allowed us
to reduce scattered neutron backgrounds down to a negligible level. Resonance
parameters and radiative kernels have been determined for 16 resonances by
means of an R-matrix analysis in the neutron energy range from 3 keV to 320
keV. Good agreement with previous measurements was found at low neutron
energies, whereas substantial discrepancies appear beyond 45 keV. With the
present results, we obtain an s-process contribution of 77(8)% to the solar
abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which
is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.
Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications
The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF
facility with high resolution in the energy range from 1 eV to 600 keV by using
two optimized C6D6 detectors. In the investigated energy interval about 130
resonances could be observed, from which 61 had enough statistics to be
reliably analyzed via the R-matrix analysis code SAMMY. Experimental
uncertainties were minimized, in particular with respect to (i) angular
distribution effects of the prompt capture gamma-rays, and to (ii) the
TOF-dependent background due to sample-scattered neutrons. Other background
components were addressed by background measurements with an enriched 208Pb
sample. The effect of the lower energy cutoff in the pulse height spectra of
the C6D6 detectors was carefully corrected via Monte Carlo simulations.
Compared to previous 206Pb values, the Maxwellian averaged capture cross
sections derived from these data are about 20% and 9% lower at thermal energies
of 5 keV and 30 keV, respectively. These new results have a direct impact on
the s-process abundance of 206Pb, which represents an important test for the
interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
- …