5 research outputs found

    Sektor gazu ziemnego w Ukrainie – szanse i bariery rozwoju

    No full text
    The paper analyzed the natural gas sector in Ukraine for the period 2000 to 2018. This sector was affected by external factors, such as the crisis which began in late 2008/2009, as well as internal factors, including the situation in Ukraine after 2013 (the Annexation of Crimea). A comparative analysis was also conducted of the natural gas sector in European Union countries and Ukraine – compared the specificity of natural gas consumption in 2018. The analysis (I) examined the demand for natural gas in Ukraine between 2000 and 2018; (II) described changes in sources to cover Ukraine’s gas needs with a particular emphasis on its own production; (III) pointed to the fundamental changes that have occurred in the natural gas supply routes to the Ukrainian sector in recent years; (IV) stressed the growing role of own production in balancing Ukraine’s gas needs; (V) described the role of Ukraine as a transit country for Russian gas to be delivered to EU countries (in recent years, the volume of natural gas transmitted via the Ukrainian transmission system has been around 90 bcm annually); and (VI) looked at the structure of natural gas consumption in the Ukrainian gas sector and how it has changed in recent years. Unlike EU countries, the growing role of own production in balancing Ukraine’s natural gas needs was emphasized, which is consistent with the strategy of the Ukrainian government. Also, attention was drawn to the threats that may significantly reduce the role of Ukraine as an important transit country. The paper also puts forward the most important parameters concerning the underground natural gas storage facilities in Ukraine which is one of the largest in Europe.W artykule przeprowadzono analizę sektora gazu ziemnego na Ukrainie w latach 2000–2018. Na sektor ten oddziaływały czynniki zewnętrzne, takie jak kryzys finansowy, który rozpoczął się na przełomie 2008/2009, a także czynniki wewnętrzne, w tym sytuacja na Ukrainie po 2013 r. (aneksja Krymu). Również przeprowadzono analizę porównawczą sektora gazu ziemnego krajów Unii Europejskiej oraz Ukrainy – porównano, jak kształtowało się jednostkowe zużycie gazu ziemnego w 2018 r. Przeanalizowano zapotrzebowanie na gaz ziemny na Ukrainie w latach 2000–2018 oraz scharakteryzowano zmiany w zakresie źródeł pokrycia popytu na gaz ziemny, ze szczególnym uwzględnieniem wydobycia własnego, a także wskazano na zasadnicze zmiany, jakie zaszły w ciągu ostatnich lat w kierunkach dostaw gazu ziemnego z importu na ukraiński rynek. W odróżnieniu od państw UE, podkreślono rosnącą rolę wydobycia własnego w zbilansowaniu potrzeb gazowych Ukrainy, co jest zbieżne ze strategią rządu ukraińskiego. Scharakteryzowano rolę Ukrainy jako kraju, przez którego terytorium realizowany jest tranzyt rosyjskiego gazu do krajów UE (w ciągu ostatnich lat wolumen przesyłanego gazu ziemnego ukraińskiego systemu przesyłowego kształtował się na poziomie około 90 mld m3 rocznie). Następnie zwrócono uwagę na zagrożenia, które mogą w istotny sposób wpłynąć na ograniczenie roli Ukrainy jako istotnego państwa tranzytowego. Porównano także, jak zmieniła się struktura zużycia gazu ziemnego na ukraińskim rynku gazu w ciągu ostatnich lat. W artykule również przybliżono najważniejsze parametry bazy PMG w Ukrainie, jednej z największej w Europie

    Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission

    No full text
    The use of hydrogen as a non-emission energy carrier is important for the innovative development of the power-generation industry. Transmission pipelines are the most efficient and economic method of transporting large quantities of hydrogen in a number of variants. A comprehensive hydraulic analysis of hydrogen transmission at a mass flow rate of 0.3 to 3.0 kg/s (volume flow rates from 12,000 Nm3/h to 120,000 Nm3/h) was performed. The methodology was based on flow simulation in a pipeline for assumed boundary conditions as well as modeling of fluid thermodynamic parameters for pure hydrogen and its mixtures with methane. The assumed outlet pressure was 24 bar (g). The pipeline diameter and required inlet pressure were calculated for these parameters. The change in temperature was analyzed as a function of the pipeline length for a given real heat transfer model; the assumed temperatures were 5 and 25 ∘ C. The impact of hydrogen on natural gas transmission is another important issue. The performed analysis revealed that the maximum participation of hydrogen in natural gas should not exceed 15%⁻20%, or it has a negative impact on natural gas quality. In the case of a mixture of 85% methane and 15% hydrogen, the required outlet pressure is 10% lower than for pure methane. The obtained results present various possibilities of pipeline transmission of hydrogen at large distances. Moreover, the changes in basic thermodynamic parameters have been presented as a function of pipeline length for the adopted assumptions

    Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations

    No full text
    During the natural gas pipeline transportation process, gas stream pressure is reduced at natural gas regulation stations (GRS). Natural gas pressure reduction is accompanied by energy dissipation which results in irreversible exergy losses in the gas stream. Energy loss depends on the thermodynamic parameters of the natural gas stream on inlet and outlet gas pressure regulation and metering stations. Recovered energy can be used for electricity generation when the pressure regulator is replaced with an expander to drive electric energy generation. To ensure the correct operation of the system, the natural gas stream should be heated, on inlet to expander. This temperature should be higher than the gas stream during choking in the pressure regulator. The purpose of this research was to investigate GRS operational parameters which influence the efficiency of the gas expansion process and to determine selection criteria for a cost-effective application of turboexpanders at selected GRS, instead of pressure regulators. The main novelty presented in this paper shows investigation on discounted payback period (DPP) equation which depends on the annual average natural gas flow rate through the analyzed GRS, average annual level of gas expansion, average annual natural gas purchase price, average annual produced electrical energy sale price and CAPEX
    corecore