17 research outputs found

    Nilpotent classical mechanics: s-geometry

    Full text link
    We introduce specific type of hyperbolic spaces. It is not a general linear covariant object, but of use in constructing nilpotent systems. In the present work necessary definitions and relevant properties of configuration and phase spaces are indicated. As a working example we use a D=2 isotropic harmonic oscillator.Comment: 8 pages, presented at QGIS, June 2006, Pragu

    Extension of the Shirafuji model for Massive Particles with Spin

    Full text link
    We extend the Shirafuji model for massless particles with primary spacetime coordinates and composite four-momenta to a model for massive particles with spin and electric charge. The primary variables in the model are the spacetime four-vector, four scalars describing spin and charge degrees of freedom as well as a pair of Weyl spinors. The geometric description proposed in this paper provides an intermediate step between the free purely twistorial model in two-twistor space in which both spacetime and four-momenta vectors are composite, and the standard particle model, where both spacetime and four-momenta vectors are elementary. We quantize the model and find explicitly the first-quantized wavefunctions describing relativistic particles with mass, spin and electric charge. The spacetime coordinates in the model are not commutative; this leads to a wavefunction that depends only on one covariant projection of the spacetime four-vector (covariantized time coordinate) defining plane wave solutions.Comment: Latex, 27 pages, appendix.sty, newlfont.sty (attached

    Massive relativistic particle model with spin from free two-twistor dynamics and its quantization

    Full text link
    We consider a relativistic particle model in an enlarged relativistic phase space M^{18} = (X_\mu, P_\mu, \eta_\alpha, \oeta_\dalpha, \sigma_\alpha, \osigma_\dalpha, e, \phi), which is derived from the free two-twistor dynamics. The spin sector variables (\eta_\alpha, \oeta_\dalpha, \sigma_\alpha,\ osigma_\dalpha) satisfy two second class constraints and account for the relativistic spin structure, and the pair (e,\phi) describes the electric charge sector. After introducing the Liouville one-form on M^{18}, derived by a non-linear transformation of the canonical Liouville one-form on the two-twistor space, we analyze the dynamics described by the first and second class constraints. We use a composite orthogonal basis in four-momentum space to obtain the scalars defining the invariant spin projections. The first-quantized theory provides a consistent set of wave equations, determining the mass, spin, invariant spin projection and electric charge of the relativistic particle. The wavefunction provides a generating functional for free, massive higher spin fields.Comment: FTUV-05-0919, IFIC-05-46, IFT UWr 0110/05. Plain latex file, no macros, 22 pages. A comment and references added. To appear in PRD1
    corecore