15 research outputs found

    Novel Approach to Tooth Chemistry: Quantification of Human Enamel Apatite in Context for New Biomaterials and Nanomaterials Development

    No full text
    A series of linear profiles of the elements of the enamel in human molar teeth were made with the use of an electron microprobe and a Raman microscope. It is postulated that the enamel can be treated as the superposition of variable “overbuilt” enamel on the stable “core” enamel at the macro-, micro- and nanoscale level. The excessive values characterize the “overbuilt enamel”. All the profiles of excessive parameters along the enamel thickness from the enamel surface to the dentin enamel junction (DEJ) can be approximated very precisely with the use of exponential functions, where Ca, P, Cl and F spatial profiles are decaying while Mg, Na, K and CO32− ones are growing distributions. The “overbuilt” apatite formed on the boundary with DEJ, enriched in Na, Mg, OH and carbonates, reacts continuously with Ca, Cl and F, passing into an acid-resistant form of the “overbuilt” enamel. The apparent phases arriving in boundary regions of the “overbuilt enamel” were proposed. Microdiffraction measurements reveal relative variation of energy levels during enamel transformations. Our investigations are the milestones for a further new class of biomaterial and nanomaterial development for biomedical applications

    Mechanisms of technical ceramic density adjusting

    No full text
    In this paper authors overviewed the most important stages of ceramics production process which give significant influence on final properties of product. Often density and porosity on the all producing stages determines exploitation ceramics properties. A calculation method for fractions ratio selection which provides optimal density is suggested here. Also, density changes during operations of grinding, forming, thermal treatment and sintering a row of specimens are researched and analysed. The data received allow to predict semi products size behaviour while producing and get definite final part with dimension required

    Novel Approach to Tooth Chemistry. Quantification of the Dental-Enamel Junction

    No full text
    The dentin-enamel junction (DEJ) is known for its special role in teeth. Several techniques were applied for the investigation of the DEJ in human sound molar teeth. The electron (EPMA) and proton (PIXE) microprobes gave consistent indications about the variability of elemental concentrations on this boundary. The locally increased and oscillating concentrations of Mg and Na were observed in the junction, in the layer adhering to the enamel and covering roughly half of the DEJ width. The chemical results were compared with the optical profiles of the junction. Our chemical and optical results were next compared with the micromechanical results (hardness, elastic modulus, friction coefficient) available in the world literature. A strong correlation of both result sets was proven, which testifies to the self-affinity of the junction structures for different locations and even for different kinds of teeth and techniques applied for studies. Energetic changes in tooth strictly connected with crystallographic transformations were calculated, and the minimum energetic status was discovered for DEJ zone. Modeling of both walls of the DEJ from optical data was demonstrated. Comparing the DEJ in human teeth with the same structure found in dinosaur, shark, and alligator teeth evidences the universality of dentin enamel junction in animal world. The paper makes a contribution to better understanding the joining of the different hard tissues

    Measurements of Energetic States Resulting from Ion Exchanges in the Isomorphic Crystals of Apatites and Bioapatites

    No full text
    Developments in the field of nanostructures open new ways for designing and manufacturing innovative materials. Here, we focused on new original ways of calculating energy changes during the substitution of foreign ions into the structure of apatites and bioapatites. Using these tools, the energetic costs of ion exchanges were calculated for the exemplary cases known from the literature. It was established that the most costly were ion exchanges of some cations inside apatites and of anions, and the least costly exchanges in tetrad channel positions. Real energy expenses for bioapatites are much smaller in comparison to mineral apatites due to the limited involvement of magnesium and carbonates in the structure of hard tissues. They are of the order of several electron volts per ion. The rigorous dependences of the energy changes and crystallographic cell volumes on the ionic radii of introduced cations were proved. The differentiation of the positioning of foreign ions in locations of Ca(I) and Ca(II) could be calculated in the case of a Ca-Pb reaction in hydroxyapatite. The energetic effects of tooth aging were indicated. The ability of energy change calculation during the ion exchange for isomorphic substances widens the advantages resulting from X-ray diffraction measurements

    Hierarchy of Bioapatites

    No full text
    Apatites are one of the most intensively studied materials for possible biomedical applications. New perspectives of possible application of apatites correspond with the development of nanomaterials and nanocompounds. Here, an effort to systematize different kinds of human bioapatites forming bones, dentin, and enamel was undertaken. The precursors of bioapatites and hydroxyapatite were also considered. The rigorous consideration of compositions and stoichiometry of bioapatites allowed us to establish an order in their mutual sequence. The chemical reactions describing potential transformations of biomaterials from octacalcium phosphate into hydroxyapatite via all intermediate stages were postulated. Regardless of whether the reactions occur in reality, all apatite biomaterials behave as if they participate in them. To conserve the charge, additional free charges were introduced, with an assumed meaning to be joined with the defects. The distribution of defects was coupled with the values of crystallographic parameters “a” and “c”. The energetic balances of bioapatite transformations were calculated. The apatite biomaterials are surprisingly regular structures with non-integer stoichiometric coefficients. The results presented here will be helpful for the further design and development of nanomaterials

    Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides

    No full text
    Water soluble polysaccharides (WSP) were isolated from Lentinus edodes fruiting bodies. The mushrooms were previously subjected to various processing techniques which included blanching, boiling, and fermenting with lactic acid bacteria. Therefore, the impact of processing on the content and biological activities of WSP was established. Non-processed fruiting bodies contained 10.70 ± 0.09 mg/g fw. Boiling caused ~12% decrease in the amount of WSP, while blanched and fermented mushrooms showed ~6% decline. Fourier transform infrared spectroscopy analysis (FTIR) confirmed the presence of β-glycosidic links, whereas due to size exclusion chromatography 216 kDa and 11 kDa molecules were detected. WSP exhibited antioxidant potential in FRAP (ferric ion reducing antioxidant power) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. Cytotoxic properties were determined on MCF-7 and T47D human breast cell lines using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test. Both biological activities decreased as the result of boiling and fermenting
    corecore