6 research outputs found
Numerical Investigation of Outflow of Non-Metallic Inclusions during Steel Refining in the Ladle
The article presents the results of numerical simulations of liquid steel flow in the main steelmaking ladle. The paper analyses the mechanism of the outflow of non-metallic Al2O3 and MnS inclusions with diameters in the range of 4–27 µm. The simulations were performed with ANSYS Fluent software. In order to determine the shape and size of non-metallic inclusions formed in the main ladle during steel refining, the collected samples of liquid metal were analysed using a scanning microscope with SEM/EDS and LM (light microscopy). Simulation tests and calculations were carried out for the case of steel refining under the conditions of the Cognor SA HSJ Department in Stalowa Wola (Poland). The presented method of using simulation tests to optimize the technology of steel refining in the ladle is an example. The analysis of the results shows that the gas flow in the metal volume has the greatest impact on the outflow of non-metallic inclusions in the steelmaking ladle
Effect of Hot-Rolled Heavy Section Bars Post-Deformation Cooling on the Microstructure Refinement and Mechanical Properties of Microalloyed Steels
In the industrial practice—especially in the reverse rolling mills—heavy section products with stable mechanical properties (YS, UTS) and ductility (A, Z) but with an impact toughness (KV) at too low levels are often observed. The results presented in the present work concern the relationship between the parameters of the cooling process of rolled products made of microalloyed steels, with different chemical compositions (such as Al-N, Al-N-V, Al-N-Ti) and their mechanical properties. Special focus was put on the relationship between chemical composition, grain size and impact toughness at subzero temperatures. It is shown, that by introducing the restrictions towards more strict control of the levels of Al, Ti, V, and N, it can be ensured that the final parameters are not that sensitive to process parameters variations which, hence, provides the required mechanical properties and especially impacts on the toughness requirements for a wide range of section products. It was also found that by slight modifications of microalloying elements and proper control of the process parameters, it is possible to replace commonly used normalizing annealing heat treatment after rolling with normalizing rolling