49 research outputs found

    Gas hydrates: Entrance to a methane age or climate threat?

    Get PDF
    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates -- in particular if combined with carbon capture and storage -- to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Global marine plankton functional type biomass distributions: coccolithophores

    Get PDF
    Coccolithophores are calcifying marine phytoplankton of the class Prymnesiophyceae. They are considered to play an import role in the global carbon cycle through the production and export of organic carbon and calcite. We have compiled observations of global coccolithophore abundance from several existing databases as well as individual contributions of published and unpublished datasets. We make conservative estimates of carbon biomass using standardised conversion methods and provide estimates of uncertainty associated with these values. The quality-controlled database contains 57 321 individual observations at various taxonomic levels. This corresponds to 11 503 observations of total coccolithophore abundance and biomass. The data span a time period of 1929–2008, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 500 m. Highest biomass values are reported in the North Atlantic, with a maximum of 127.2 μg C L−1. Lower values are reported for the Pacific (maximum of 20.0 μg C L−1) and Indian Ocean (up to 45.2 μg C L−1). Maximum biomass values show peaks around 60° N and between 40 and 20° S, with declines towards both the equator and the poles. Biomass estimates between the equator and 40° N are below 5 μg C L−1. Biomass values show a clear seasonal cycle in the Northern Hemisphere, reaching a maximum in the summer months (June–July). In the Southern Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of low-latitude data. The original and gridded datasets can be downloaded from Pangaea (doi:10.1594/PANGAEA.785092)
    corecore