19 research outputs found

    A torque-based method demonstrates increased rigidity in Parkinson’s disease during low-frequency stimulation

    Get PDF
    Low-frequency oscillations in the basal ganglia are prominent in patients with Parkinson’s disease off medication. Correlative and more recent interventional studies potentially implicate these rhythms in the pathophysiology of Parkinson’s disease. However, effect sizes have generally been small and limited to bradykinesia. In this study, we investigate whether these effects extend to rigidity and are maintained in the on-medication state. We studied 24 sides in 12 patients on levodopa during bilateral stimulation of the STN at 5, 10, 20, 50, 130 Hz and in the off-stimulation state. Passive rigidity at the wrist was assessed clinically and with a torque-based mechanical device. Low-frequency stimulation at ≤20 Hz increased rigidity by 24 % overall (p = 0.035), whereas high-frequency stimulation (130 Hz) reduced rigidity by 18 % (p = 0.033). The effects of low-frequency stimulation (5, 10 and 20 Hz) were well correlated with each other for both flexion and extension (r = 0.725 ± SEM 0.016 and 0.568 ± 0.009, respectively). Clinical assessments were unable to show an effect of low-frequency stimulation but did show a significant effect at 130 Hz (p = 0.002). This study provides evidence consistent with a mechanistic link between oscillatory activity at low frequency and Parkinsonian rigidity and, in addition, validates a new method for rigidity quantification at the wrist

    Computational models can replicate the capacity of human recognition memory.

    No full text
    The capacity of human recognition memory was investigated by Standing, who presented several groups of participants with different numbers of pictures (from 20 to 10 000), and subsequently tested their ability to distinguish between previously presented and novel pictures. The estimated number of pictures retained in recognition memory by different groups when plotted as a logarithmic function of the number of pictures presented formed a straight line, representing a power-law relationship. Here, we investigate if published models of familiarity discrimination can replicate Standing's results. We first consider a simplified assumption that visual stimuli are represented by uncorrelated patterns of firing of visual neurons providing input to the familiarity discrimination network. We show that for this case three models (Familiarity discrimination based on Energy (FamE), Anti-Hebbian and Info-max) can reproduce the observed power-law relationship when their synaptic weights are appropriately initialized. For more realistic assumptions on neural representation of stimuli, the FamE model is no longer able to reproduce the power-law relationship in simulations, while the Anti-Hebbian and Info-max can reproduce it. Nevertheless, the slopes of the power-law relationships produced by the models in all simulations differ from that observed by Standing. We discuss possible reasons for this difference, including separate contributions of familiarity and recollection processes, and describe experimentally testable predictions based on our analysis
    corecore