43 research outputs found

    Representations of solutions of the wave equation based on relativistic wavelets

    Full text link
    A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincar\'e group, i.e., with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.Comment: submitted to J. Phys. A: Math. Theor., 20 pages, 6 figure

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605

    Correction of aggregative thrombocytes activity in patients with unstable angina by THz irradiation of nitrogen oxide occurrence at in vitro conditions

    No full text
    There had been shown a normalizing effect of THz radiation of MEAS (molecular emission and absorption spectrum) of 400 GHz nitrogen oxide occurrence on aggregation parameters of thrombocytes in patients with unstable angina at in vitro conditions. 180 patients with an unstable angina had been involved in to the research

    Effect of terahertz irradiation of 240 GHz of nitrogen oxide occurrence on blood rheological properties

    No full text
    The presented research aimed to study biophysical effects of exogenic and endogenic nitrogen oxide (NO) molecules in crossed magnetic and electric fields, with their molecular emission and absorption rotation spectra (MEAS) of 240 GHz occurrence, on blood rheological properties in the patients with unstable angina. 60 patients, aged 55.6±0.93 years, with unstable angina were included in this study. The study results display that the further research is necessary in normalizing influence of MEAS of 240 GHz nitrogen oxide occurrence in crossed magnetic and electric fields on defected blood rheological properties

    Microbial Composition on Abandoned and Reclaimed Mining Sites in the Komi Republic (North Russia)

    No full text
    Restoration of anthropogenically disturbed soils is an urgent problem in modern ecology and soil biology. Restoration processes in northern environments are especially important, due to the small amounts of fertile land and low levels of natural succession. We analyzed the soil microbiota, which is one of the indicators of the succession process is the soil. Samples were obtained from three disturbed soils (self-overgrown and reclaimed quarries), and two undisturbed soils (primary and secondary forests). Primary Forest soil had a well-developed soil profile, and a low pH and TOC (total organic carbon) amount. The microbial community of this soil had low richness, formed a clear remote cluster in the beta-diversity analysis, and showed an overrepresentation of Geobacter (Desulfobacteriota). Soil formation in clay and limestone abandoned quarries was at the initial stage, and was caused by both a low rate of mineral profile formation and severe climatic conditions in the region. Microbial communities of these soils did not have specific abundant taxa, and included a high amount of sparse taxa. Differences in taxa composition were correlated with abiotic factors (ammonium concentration), which, in turn, can be explained by the parent rock properties. Limestone quarry reclaimed by topsoil coverage resulted in an adaptation of the top soil microbiota to a novel parent rock. According to the CCA analysis, the microbial composition of samples was connected with pH, TOC and ammonium nitrogen concentration. Changes in pH and TOC were connected with ASVs from Chloroflexota, Gemmatimonadota and Patescibacteria. ASVs from Gemmatimonadota also were correlated with a high ammonium concentration

    RIAM: A Universal Accessible Protocol for the Isolation of High Purity DNA from Various Soils and Other Humic Substances

    No full text
    A single universal open protocol RIAM (named after Research Institute for Agricultural Microbiology) for the isolation of high purity DNA from different types of soils and other substrates (high and low in humic, clay content, organic fertilizer, etc.) is proposed. The main features of the RIAM protocol are the absence of the sorption–desorption stage on silica columns, the use of high concentrations of phosphate in buffers, which prevents DNA sorption on minerals, and DNA precipitation using CTAB. The performance of RIAM was compared with a reference commercial kit and showed very good results in relation to the purity and quantity of DNA, as well as the absence of inhibitory activity on PCR. In all cases, the RIAM ensured the isolation of DNA in quantities much greater than the commercial kit without the effect of PCR inhibition up to 50 ng DNA per reaction in a volume of 15 µL. The latter circumstance along with the ability of the protocol to extract low molecular weight DNA fractions makes the method especially suitable for those cases where quantitative assessments, detection of minor components of soil microbiota, and completeness of isolation of all DNA fractions are required

    Dynamic of the Soil Microbiota in Short-Term Crop Rotation

    No full text
    Crop rotation is one of the oldest and most effective methods of restoring soil fertility, which declines when the same plant is grown repeatedly. One of the reasons for a reduction in fertility is the accumulation of pathogenic and unfavorable microbiota. The modern crop rotation schemes (a set of plant species and their order in the crop rotation) are highly effective but are designed without considering soil microbiota dynamics. The main goal of this study was to perform a short-term experiment with multiple plant combinations to access the microbiological effects of crop rotation. It could be useful for the design of long-term crop rotation schemes that take the microbiological effects of the crop rotation into account. For the analysis, five plants (legumes: vetch, clover, and cereals: oats, wheat, and barley) were used. These five plants were separately grown in pots with soil. After the first phase of vegetation, the plants were removed from the soil and a new crop was planted. Soil samples from all 25 possible combinations of primary and secondary crops were investigated using v4-16S rDNA gene sequencing. It was shown that the short-term experiments (up to 40 days of growing) are effective enough to find microbial shifts in bulk soil from different plants. Both primary and secondary cultures are significant factors for the microbial composition of microbial soil communities. Changes are the most significant in the microbial communities of vetch soils, especially in the case of vetch monoculture. Growing clover also leads to changes in microbiota, especially according to beta-diversity. Data obtained can be used to develop new crop rotation schemes that take into account the microbiological effects of various crops

    The Structure of Stable Cellulolytic Consortia Isolated from Natural Lignocellulosic Substrates

    No full text
    Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates—oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates—Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components
    corecore