29 research outputs found

    Structural characterization of ÎŒc-Si:H films produced by R.F. magnetron sputtering

    Get PDF
    Microcrystalline silicon thin films were produced by R.F. magnetron sputtering. The microstructure of these films has been studied by X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy. Average values of crystalline size and strain obtained by the different tecnhiques used are critically compared and the reasons for the differences are discussed

    Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering

    Get PDF
    Metallic components like moulds, dies and machinery can be subjected to intensive degradation during plastic transformation processes, namely when working with fibre filler materials and plastics which release F, S or Cl during transformation. The degradation is attributed to the combined erosive and abrasive wear by the filler material and corrosive attack of agents. This degradation reduces the lifetime of the components considerably and has a direct impact on process productivity and surface finish of the final products. Nitride-based hard coatings like TiN, (TiAl)N, BN, etc. have proved their capability to increase tool lifetime when exposed to abrasive and corrosive environments found in plastic transformation processes halogenated polymers, acrylics, polyesters, fibre reinforced plastics, etc.. Within the frame of this work we produced TiN, (TiAl)N, CrN hard coatings, with and without a metallic interlayer, by dc and rf reactive magnetron sputtering, with a thickness of about 2 ÎŒm. The aqueous corrosion behaviour of the coatings was studied in saline and acidic environments by potentiodynamic and open circuit potential (OCP) measurements. The oxidation resistance during annealing in air was also studied. In saline NaCl 9% and acid HCl 3.4%environments we found that a metallic interlayer of Ti or Cr in the case of TiN– TiAl N-coated samples and CrN-coated samples, respectively, generally improve the corrosion resistance. Best results for all tested nitride coated samples were obtained for the Ti Al N coating. The OCP vs. Saturated Calomel Electrode (SCE) (60 min) measurements indicated that most samples were nobler than the un-coated substrate. The mentioned potentials depend on the deposition conditions and the film microstructure. Most of the coatings lose some of their protective capabilities after an high temperature annealing. In contrast to the Ti-based hard coatings, the corrosion resistance of CrN is improved by a 800ÂșC annealing treatment in air

    Microcrystalline silicon thin films prepared by RF reactive magnetron sputter deposition

    Get PDF
    Hydrogenated microcrystalline silicon (microc-Si:H) thin films with Cu as a dopant material (about 2 wt.%) were deposited by RF planar magnetron sputtering in an argon/hydrogen plasma. The composition and microstructure of the films were analysed by SEM, ERD/RBS, X-ray diffraction and Raman spectroscopy. These techniques revealed a columnar film structure, each column consisting of several small (nano) crystals with a lateral dimension up to 10nm. The crystals are oriented, generally with the (111) plane parallel to the sample surface. The hydrogen content of the thin films is about 27-33 at.%. Low deposition rates and low sputter gas pressures favour crystallisation and grain growth. The behaviour can be understood in terms of the diffusion or relaxation length of the deposited Si-atoms

    Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications

    Get PDF
    Characterization of a TiAlN/TiAlON/SiO2 tandem absorber is reported in this contribution. The first two layers were deposited by magnetron sputtering and the third layer was prepared by plasma enhanced chemical vapour deposition (PECVD). The optimization was performed by determining the optical constants of individual layers by first measuring spectral transmittance and reflectance of the individual layers. Subsequently the measuring spectra were fitted using the SCOUT software and dielectric function of each layer was determined. The three layer stack absorber on copper was then designed using those optical properties. The thickness of the individual layers was optimized until a solar absorptance of 95.5% was obtained resulting in a total thickness of about 215 nm (65 nm/51 nm/100 nm for the individual layers, respectively). A thermal emittance of 5% for an absorber temperature of 100 °C was obtained by analyzing the measuring data from a FTIR spectrometer with integrating sphere. During continuous thermal annealing at 278 °C for 600 h the absorptance decreased by 0.4%Savo Sola

    Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications

    Get PDF
    Preparation and characterization of TiAlSiN/TiAlSiON/SiO2 solar selective absorber is reported in this contribution. All layers were deposited in a continuous mode using a industrial equipment, the nitride and oxynitride were prepared by reactive magnetron sputtering and the SiO2 layer by Plasma Enhanced Chemical Vapour Deposition. The optical constants of individual layers were calculated by modelling of spectral transmittance and reflectance of the individual layers. The three layer stack absorber was then designed using those optical properties. The thickness of the individual layers was optimized until a solar absorptance of 96% was obtained resulting in a total thickness of about 200 nm, deposited in copper and extruded aluminium absorbers. An emissivity of 5 % for an absorber temperature of 100 ÂșC was obtained by analyzing the measuring data from a FTIR spectrometer with integrating sphere. After test duration of 600 h, the samples subjected to a thermal annealing at 278 ÂșC in air showed a performance criterion (PC) below 4% for, while the samples in the humidity tests showed a PC below 2 %.Savo Sola

    Solar selective absorbers based on Al2O3:W cermets and AlSiN/AlSiON layers

    Get PDF
    Solar selective coatings based on double Al2O3:W cermet layers and AlSiN/AlSiON bilayer structures were prepared by magnetron sputtering. Both were deposited on stainless steel substrates using a metallic tungsten (W) layer as back reflector. The coating stacks were completed by an antireflection (AR) layer composed of Al2O3, SiO2, or AlSiOx. Spectrophotometer measurements, X-Ray diffraction, Scanning electron microscopy, Energy Dispersive X-Ray Spectroscopy and Rutherford Backscattering Spectrometry were used to characterize the optical properties, crystalline structure, morphology and composition of these coatings. The spectral optical constants of the single layers were calculated from the reflectance and transmittance measurements and used to design the optical stack. The coatings exhibit a solar absorptance of 93%-95% and an emissivity of 7%-10% (at 400 ÂșC). The coatings also exhibit excellent thermal stability, with small changes in the optical properties of the coating during heat-treatments at 400 ÂșC in air for 2500 h and at 580 ÂșC in vacuum for 850 h. The coating based on the AlSiN/AlSiON bilayer structure was obtained with an Al:Si ratio of 2.5:1. These coatings revealed similar performance as the one obtained with coatings based on Al2O3:W cermet layers.The authors acknowledge the funding from the Finnish Funding Agency for Technology and Innovation, Tekes, and from FEDER funds through the “Programa Operacional Factores de Competitividade – COMPETE” and from national funds by FCT- “Fundação para a CiĂȘncia e a Tecnologia”, under project no. PEst-C/FIS/UI0607/2011.info:eu-repo/semantics/publishedVersio

    Mechanical characterisation of TiN/ZrN multi-layered coatings

    Get PDF
    Ultra-microhardness, adhesion and residual-stress analysis tests were performed on reactive sputtered deposited TiN/ZrN multi-layers. Hardness values as high as ~3600 Vickers were achieved for this material. Scratch tests of coatings deposited on steel substrates confirmed the existence of different mechanisms associated with total adhesion failure, depending essentially on multi-layer deposition control parameters. Stress-relaxation measurements indicated the compressive nature of these thin films. The inherent mechanical characterisation was broadened regarding the induced contributions from film thickness, total interfacial roughness, number of bi-layers and corresponding modulation periodicity. Complementary analyses with data extracted from structural XRD studies have been undertaken.http://www.sciencedirect.com/science/article/B6TGJ-41M9FXX-14/1/f67cd4e602801eb3439973eebbef743
    corecore