94 research outputs found

    Effects of Antibiotics on the Intestinal Microbiota of Mice

    Get PDF
    Studies on human and mouse gastrointestinal microbiota have correlated the composition of the microbiota to a variety of diseases, as well as proved it vital to prevent colonization with resistant bacteria, a phenomenon known as colonization resistance. Antibiotics dramatically modify the gut community and there are examples of how antibiotic usage lead to colonization with resistant bacteria [e.g., dicloxacillin usage selecting for ESBL-producing E. coli carriage], as shown by Hertz et al. Here, we investigated the impact of five antibiotics [cefotaxime, cefuroxime, dicloxacillin, clindamycin, and ciprofloxacin] on the intestinal microbiota in mice. Five different antibiotics were each given to groups of five mice. The intestinal microbiotas were profiled by use of the IS-pro analysis; a 16S–23S rDNA interspace [IS]-region-based profiling method. For the mice receiving dicloxacillin and clindamycin, we observed dramatic shifts in dominating phyla from day 1 to day 5. Of note, diversity increased, but overall bacterial load decreased. For ciprofloxacin, cefotaxime, and cefuroxime there were few overall changes. We speculate that antibiotics with efficacy against the abundant anaerobes in the gut, particularly Bacteroidetes, can in fact be selected for resistant bacteria, disregarding the spectrum of activity

    Recent Emergence of Staphylococcus aureus Clonal Complex 398 in Human Blood Cultures

    Get PDF
    Background: Recently, a clone of MRSA with clonal complex 398 (CC398) has emerged that is related to an extensive reservoir in animals, especially pigs and veal calves. It has been reported previously that methicillin-susceptible variants of CC398 circulate among humans at low frequency, and these have been isolated in a few cases of bloodstream infections (BSI). The purpose of this study was to determine the prevalence of S. aureus CC398 in blood cultures taken from patients in a geographic area with a high density of pigs. Methodology/Principal Findings: In total, 612 consecutive episodes of S. aureus BSI diagnosed before and during the emergence of CC398 were included. Three strains (2 MSSA and 1 MRSA) that were isolated from bacteremic patients between 2010-2011 were positive in a CC398 specific PCR. There was a marked increase in prevalence of S. aureus CC398 BSI isolated between 2010-2011 compared to the combined collections that were isolated between 1996-1998 and 2002-2005 (3/157, 1.9% vs. 0/455, 0.0%; p = 0.017). Conclusions/Significance: In conclusion, in an area with a relative high density of pigs, S. aureus CC398 was found as a cause of BSI in humans only recently. This indicates that S. aureus CC398 is able to cause invasive infections in humans and that the preva

    Microbiome on the Bone-Anchored Hearing System: A Prospective Study

    Get PDF
    The bone-anchored hearing system (BAHS) has evolved to a common treatment option for various types of hearing revalidation. The BAHS consists of an implant in the skull that breeches the skin. Soft tissue reactions are a common complication associated with BAHS and are generally poorly understood. This study aims to investigate the influence of BAHS and associated skin reactions around the implant. A total of 45 patients were prospectively followed from implantation up to at least 1 year. Swabs were obtained at baseline, 12 weeks follow-up and during cases of inflammation (Holgers score ≥2). The microbiota was assessed using IS-proTM, a bacterial profiling method based on the interspace region between the 16S–23S rRNA genes. Detection of operational taxonomic units, the Shannon Diversity Index, sample similarity analyses and Partial Least Squares Discriminant Analysis (PLS-DA) were employed. Staphylococcus epidermidis, Streptococcus pneumoniae/mitis, Propionibacterium acnes, Staphylococcus capitis, Staphylococcus hominis, Bifidobacterium longum, Haemophilus parainfluenzae, Lactobacillus rhamnosus, Bordetella spp., Streptococcus sanguinis, Peptostreptococcus anaerobius, Staphylococcus aureus, Lactococcus lactis, Enterobacter cloacae, and Citrobacter koseri were the most commonly found bacterial species. S. pneumoniae/mitis was significantly more often observed after implantation, whereas P. acnes was significantly less observed after implantation compared with baseline. The relative abundance of S. epidermidis (17%) and S. aureus (19.4%) was the highest for the group of patients with inflammation. The Shannon Diversity Index was significantly increased after implantation compared with pre-surgical swabs for Firmicutes, Actinobacteria, Fusobacteria, Verrucomicrobia (FAFV), but not for other phyla. When combining all phyla, there was no significant increase in the Shannon Diversity Index. The diversity index was similar post-surgically for patients experiencing inflammation and for patients without inflammation. With a supervised classifier (PLS-DA), patients prone to inflammation could be identified at baseline with an accuracy of 91.7%. In addition, PLS-DA could classify post-surgical abutments as non-inflamed or inflamed with an accuracy of 97.7%. This study shows the potential of using IS-proTM to describe and quantify the microbiota associated with the percutaneous BAHS. Furthermore, the results indicate the possibility of an early identification of patients susceptible to adverse skin reaction following implantation. Both S. aureus and S. epidermidis should be considered as relevant bacteria for BAHS-associated inflammation

    Binary IS Typing for Staphylococcus aureus

    Get PDF
    Background: We present an easily applicable test for rapid binary typing of Staphylococcus aureus: binary interspace (IS) typing. This test is a further development of a previously described molecular typing technique that is based on length polymorphisms of the 16S-23S rDNA interspace region of S. aureus. Methodology/Principal Findings: A novel approach of IS-typing was performed in which binary profiles are created. 424 human and animal derived MRSA and MSSA isolates were tested and a subset of these isolates was compared with multi locus sequence typing (MLST) and Amplified Fragment Length Polymorphism (AFLP). Binary IS typing had a high discriminatory potential and a good correlation with MLST and AFLP. Conclusions/Significance: Binary IS typing is easy to perform and binary profiles can be generated in a standardized fashion. These two features, combined with the high correlation with MLST clonal complexes, make the techniqu

    Profound Pathogen-Specific Alterations in Intestinal Microbiota Composition Precede Late-Onset Sepsis in Preterm Infants:A Longitudinal, Multicenter, Case-Control Study

    Get PDF
    BACKGROUND: The role of intestinal microbiota in the pathogenesis of late-onset sepsis (LOS) in preterm infants is largely unexplored but could provide opportunities for microbiota-targeted preventive and therapeutic strategies. We hypothesized that microbiota composition changes before the onset of sepsis, with causative bacteria that are isolated later in blood culture. METHODS: This multicenter case-control study included preterm infants born under 30 weeks of gestation. Fecal samples collected from the 5 days preceding LOS diagnosis were analyzed using a molecular microbiota detection technique. LOS cases were subdivided into 3 groups: gram-negative, gram-positive, and coagulase-negative Staphylococci (CoNS). RESULTS: Forty LOS cases and 40 matched controls were included. In gram-negative LOS, the causative pathogen could be identified in at least 1 of the fecal samples collected 3 days prior to LOS onset in all cases, whereas in all matched controls, this pathogen was absent (P = .015). The abundance of these pathogens increased from 3 days before clinical onset. In gram-negative and gram-positive LOS (except CoNS) combined, the causative pathogen could be identified in at least 1 fecal sample collected 3 days prior to LOS onset in 92% of the fecal samples, whereas these pathogens were present in 33% of the control samples (P = .004). Overall, LOS (expect CoNS) could be predicted 1 day prior to clinical onset with an area under the curve of 0.78. CONCLUSIONS: Profound preclinical microbial alterations underline that gut microbiota is involved in the pathogenesis of LOS and has the potential as an early noninvasive biomarker

    The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs.

    Get PDF
    Face masks and personal respirators are used to curb the transmission of SARS-CoV-2 in respiratory droplets; filters embedded in some personal protective equipment could be used as a non-invasive sample source for applications, including at-home testing, but information is needed about whether filters are suited to capture viral particles for SARS-CoV-2 detection. In this study, we generated inactivated virus-laden aerosols of 0.3-2 microns in diameter (0.9 µm mean diameter by mass) and dispersed the aerosolized viral particles onto electrostatic face mask filters. The limit of detection for inactivated coronaviruses SARS-CoV-2 and HCoV-NL63 extracted from filters was between 10 to 100 copies/filter for both viruses. Testing for SARS-CoV-2, using face mask filters and nasopharyngeal swabs collected from hospitalized COVID-19-patients, showed that filter samples offered reduced sensitivity (8.5% compared to nasopharyngeal swabs). The low concordance of SARS-CoV-2 detection between filters and nasopharyngeal swabs indicated that number of viral particles collected on the face mask filter was below the limit of detection for all patients but those with the highest viral loads. This indicated face masks are unsuitable to replace diagnostic nasopharyngeal swabs in COVID-19 diagnosis. The ability to detect nucleic acids on face mask filters may, however, find other uses worth future investigation

    Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples

    No full text
    Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice

    Ulcerative Gastritis and Esophagitis in Two Children with Sarcina ventriculi Infection

    No full text
    Sarcina ventriculi is a Gram-positive, obligate anaerobic coccus, with a characteristic morphology. Only 22 cases of human infections by this microorganism, including 7 in children, have been reported in literature so far. Affected subjects usually present with abdominal pain, nausea, vomiting, and delayed gastric emptying. However, life-threatening complications, like emphysematous gastritis and gastric perforation have also been described. Gastroparesis and gastric outlet obstruction have been considered as a potential etiologic factor. All pediatric cases described thus far presented with concomitant gastrointestinal pathology, such as Helicobacter pylori gastritis, celiac disease, infection with Giardia lamblia or Candida spp. Here, we report two children with S. ventriculi infection, in whom the diagnosis was established by typical histological findings in mucosal biopsies. The first child presented with hematemesis due to ulcerative esophagitis and gastritis, the second child with a history of esophageal stricture had ulcerative gastritis. Confirmation of S. ventriculi infection is feasible by molecular microbiota detection methods, since this microorganism cannot be detected by classical culture techniques. Prompt treatment with antibiotics could prevent life-threatening complications

    Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model

    No full text
    The aim of this study was to screen how rapidly the human gut microbiota responds to diet in an in vitro model of the proximal colon (TIM-system). Two experimental diets were provided to the gut bacteria: a high carbohydrate and a high protein diet. The metabolic response and the composition of the microbiota were compared to a control diet simulating an average western meal. Short-chain and branched-chain fatty acids (SCFA and BCFA, respectively) production, in addition to changes in the community composition (profiling), were measured. The activity of the microbiota reflected differences between diets, exhibiting a trade-off between saccharolytic and proteolytic fermentation when compared to the control. Diversity analysis revealed a phylum-specific response depending on the diet tested. Most changes in the microbiome composition occurred during the first 24 h of the experiment. The outcome of this study elucidates the fact that human gut bacteria quickly respond to changes in diet. In addition, it confirms that variations in the concentration of carbohydrates and proteins modify the activity and composition of the microbiota, and these changes can potentially have an impact on the health of the host. © 2015 Institut Pasteur
    • …
    corecore