1,109 research outputs found

    On rational boundary conditions for higher-order long-wave models

    Get PDF
    Higher-order corrections to classical long-wave theories enable simple and efficient modelling of the onset of wave dispersion and size effects produced by underlying micro-structure. Since such models feature higher spatial derivatives, one needs to formulate additional boundary conditions when confined to bounded domains. There is a certain controversy associated with these boundary conditions, because it does not seem possible to justify their choice by purely physical considerations. In this paper an asymptotic model for onedimensional chain of particles is chosen as an exemplary higher-order theory. We demonstrate how the presence of higher-order derivative terms results in the existence of non-physical “extraneous” boundary layer-type solutions and argue that the additional boundary conditions should generally be formulated to eliminate the contribution of these boundary layers into the averaged solution. Several new methods of deriving additional boundary conditions are presented for essential boundary. The results are illustrated by numerical examples featuring comparisons with an exact solution for the finite chain

    Asymptotic and Padé Approximants Methods in the Theory of Reinforced Plates and Shells

    Get PDF
      &nbsp

    Asymptotic Investigation of the Nonlinear Dynamic Boundary Value Problem for Rods

    Get PDF
      &nbsp

    Homogenization and Perturbation Procedures in the Theory of Ring-Stiffened Shells

    Get PDF
      &nbsp

    Higher Order Matrix SUSY Transformations in Two-Dimensional Quantum Mechanics

    Full text link
    The iteration procedure of supersymmetric transformations for the two-dimensional Schroedinger operator is implemented by means of the matrix form of factorization in terms of matrix 2x2 supercharges. Two different types of iterations are investigated in detail. The particular case of diagonal initial Hamiltonian is considered, and the existence of solutions is demonstrated. Explicit examples illustrate the construction.Comment: 15

    Lorentz Symmetry Breaking in Abelian Vector-Field Models with Wess-Zumino Interaction

    Full text link
    We consider the abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The occurence of the dynamic breaking of Lorentz symmetry at classical and one-loop level is described for massless and massive vector fields. This phenomenon appears to be the non-perturbative counterpart of the perturbative renormalizability and/or unitarity breaking in the chiral gauge theories.Comment: 11 pages,LaTeX, Preprint DFUB/94 - 1

    Multiparticle SUSY quantum mechanics and the representations of permutation group

    Get PDF
    The method of multidimensional SUSY Quantum Mechanics is applied to the investigation of supersymmetrical N-particle systems on a line for the case of separable center-of-mass motion. New decompositions of the superhamiltonian into block-diagonal form with elementary matrix components are constructed. Matrices of coefficients of these minimal blocks are shown to coincide with matrices of irreducible representations of permutations group S_N, which correspond to the Young tableaux (N-M,1^M). The connections with known generalizations of N-particle Calogero and Sutherland models are established.Comment: 20 pages, Latex,no figure
    • …
    corecore