18 research outputs found

    Qualitative solution of QCD sum rules

    Full text link
    We show how such important features of QCD as chiral symmetry breaking or the formation of a mass-gap can be directly traced from QCD sum rules for two point functions assuming, in the large number of colors limit, exact duality between the operator product expansion and the spectrum described by linearly (or nearly linear) rising Regge trajectories as predicted by string theory. We see how the presence of chiral symmetry breaking is intimately related to confinement in this scenario, as expected from general arguments, and how Regge trajectories change when chiral symmetry is broken. As a result the whole meson mass spectrum can be parametrized with a good accuracy by the constant fπf_{\pi} only, thus realizing the program proposed by Migdal some time ago.Comment: Version published in JHE

    Matching Regge Theory to the OPE

    Full text link
    The spectra of masses and decay constants for non-strange meson resonances in the energy range 0--2.5 GeV is analyzed. It is known from meson phenomenology that for given quantum numbers these spectra approximately follow linear trajectories with a universal slope. These facts can be understood in terms of an effective string description for QCD. For light meson states the trajectories deviate noticeably from the linear behavior. We investigate the possible corrections to the linear trajectories by matching two-point correlators of quark currents to the Operator Product Expansion (OPE). We find that the allowed modifications to the linear Regge behavior must decrease rapidly with the principal quantum number. After fitting the lightest states in each channel and certain low-energy constants the whole spectrum for meson masses and residues is obtained in a satisfactory agreement with phenomenology. We briefly speculate on possible implications for the QCD effective string.Comment: 24 pages, Latex, significant changes in discussion of fits, more refs adde

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
    corecore