95 research outputs found

    Development and application of metamaterial-based half-wave plates for the NIKA and NIKA2 polarimeters

    Get PDF
    Context. Large field-of-view imaging and polarimetry instruments operating at millimetre and sub-millimetre wavelengths are fundamental tools to understand the role of magnetic fields in channelling filament material into prestellar cores, providing unique insight in the physics of galactic star-forming regions. Among other topics, at extra-galactic scales, polarisation observations of Active Galactic Nuclei (AGNs) will allow us to constrain the possible physical conditions of the emitting plasma from the jets and/or explore the physics of dust inside supernova remnants. The kilo-pixel New IRAM KIDs Array 2 (NIKA2) camera, installed today at the Institut de Radioastronomie Millimétrique (IRAM) 30-m telescope, represents one of the best tools available to astronomers to produce simultaneous intensity and polarimetry maps over large fields at 260 GHz (1.15 mm). Aims. The polarisation measurement, in NIKA and NIKA2, is achieved by rapidly modulating the total incoming polarisation. In the end, this allows one to safely isolate the small science signal from the large, un-polarised, and strongly variable, atmospheric background. Methods. The polarisation modulation is achieved by inserting a fast rotating half-wave plate (HWP) in the optical beam. In order to allow wide field-of-view observations, the plate has to be large, with a diameter of 250 mm. The modulation of the polarised signal at 12 Hz also requires the waveplate to be sufficiently light. In addition, this key optical element has to exhibit optimal electromagnetic characteristics in terms of transmission and differential phase-shift. For this purpose, three metamaterial HWPs have been developed using the mesh-filter technology. The knowledge acquired in developing the first two single-band HWPs was used to achieve the more challenging performance requirements of the last dual-band HWP. The first and the third waveplates met the requirements for both the NIKA and NIKA2 instruments. Results. We first illustrate the design, the technical developments, the fabrication, and laboratory characterisation of the three mesh-HWPs. The deployment of two such elements in the NIKA and NIKA2 instruments at the 30-metre telescope is then described. We conclude with representative examples of astrophysical maps integrating polarimetry

    Factors related to the death of diabetic patients with COVID-19 hospitalized in Joseph Raseta Befelatanana University Hospital in Antananarivo, Madagascar

    Get PDF
    Background: Diabetes mellitus is associated with severe and even fatal forms of COVID-19. The objective of this study was to identify the factors linked to the death of COVID-19 diabetic patients in order to improve their care.Methods: An analytical cross-sectional study was carried out in the endocrinology department of the Joseph Raseta Befelatanana University Hospital Center, Antananarivo, Madagascar. It has concerned all the cases of COVID-19 diabetics (162 patients) recorded from April 2020 to July 2021 (16 months).Results: In our study, the case fatality rate of COVID-19 in diabetics was 14.49%. Significant factors related to death, after univariate analysis, were:  vascular complications including nephropathy (OR=4.74), neuropathy  (OR=5.38) and ischemic heart disease (OR=3.9), presence of other comorbidities (OR=9.02), dyspnea (OR=4.60), seizures (OR=6.22) or alertness disorder (OR=4.35), lower oxygen saturation (p=0.04), pleurisy (OR=4.67), signs of cardiac decompensation (OR=3.46), an elevated mean blood sugar level (p<0.001), leukocytosis (p=0.02) and thrombocytopenia (p<0.001), impaired renal function (p=0.02) and pleurisy on chest imaging (OR=5.29).Conclusions: Death factors in diabetics with COVID-19 can be diverse. They do not only include the cardiovascular complications of the diabetes, but also a worse clinical respiratory presentation on the admission, a higher inflammatory syndrome, and a greater imbalance of blood sugar during the hospitalization.

    Detection of Bioactive Exometabolites Produced by the Filamentous Marine Cyanobacterium Geitlerinema sp.

    Get PDF
    Marine cyanobacteria are noted for their ability to excrete metabolites with biotic properties. This paper focuses on such exometabolites obtained from the culture of the marine filamentous cyanobacterium Geitlerinema sp. strain, their purification and subsequent analyses. By this means the recoveries of the active compounds, a prerequisite for properly determining their concentration, are quantified here for the first time. We demonstrate a new procedure using Amberlite XAD-1180 resin in combination with the eluent isopropanol for extraction of the culture media and gas chromatography as simplified chemical analysis. This procedure reduced necessary bacteria cultivation time (from 150 to 21 days) at low volumes of culture media (300 mL) required for identification of two selected bioactive compounds: 4,4â€Č-dihydroxybiphenyl and harmane

    The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope

    Get PDF
    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-of-view of 6.5 arcmin in diameter, and configurable to map the linear polarisation at 260 GHz. Aims. First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors, and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an adhoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-m IRAM telescope at Pico Veleta, near Granada (Spain). Methods. We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results. NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In particular, NIKA2 exhibits full width at half maximum angular resolutions of around 11 and 17.5 arcsec at respectively 260 and 150 GHz. The noise equivalent flux densities are, at these two respective frequencies, 33±2 and 8±1 mJy s1/2. A first successful science verification run was achieved in April 2017. The instrument is currently offered to the astronomy community and will remain available for at least the following ten years

    Exploiting NIKA2/ XMM-Newton imaging synergy for intermediate-mass high- z galaxy clusters within the NIKA2 SZ large program: Observations of ACT-CL J0215.4+0030 at z ∌0.9

    Get PDF
    High-resolution mapping of the intracluster medium (ICM) up to high redshift and down to low masses is crucial to derive accurate mass estimates of the galaxy cluster and to understand the systematic eects aecting cosmological studies based on galaxy clusters. We present a spatially resolved Sunyaev-Zel'dovich (SZ)/X-ray analysis of ACT-CL J0215.4+0030, a high-redshift (z = 0:865) galaxy cluster of intermediate mass (M500 ' 3:5 1014 M) observed as part of the ongoing NIKA2 SZ large program, which is a follow-up of a representative sample of objects at 0:5 z 0:9. In addition to the faintness and small angular size induced by its mass and redshift, the cluster is contaminated by point sources that significantly aect the SZ signal. This is therefore an interesting case study for the most challenging sources of the NIKA2 cluster sample. We present the NIKA2 observations of this cluster and the resulting data.We identified the point sources that aect the NIKA2 maps of the cluster as submillimeter galaxies with counterparts in catalogs of sources constructed by the SPIRE instrument on board the Herschel observatory. We reconstructed the ICM pressure profile by performing a joint analysis of the SZ signal and of the point-source component in the NIKA2 150 GHz map. This cluster is a very weak source that lies below the selection limit of the Planck catalog. Nonetheless, we obtained high-quality estimates of the ICM thermodynamical properties with NIKA2. We compared the pressure profile extracted from the NIKA2 map to the pressure profile obtained from X-ray data alone by deprojecting the public XMM-Newton observations of the cluster.We combined the NIKA2 pressure profile with the X-ray deprojected density to extract detailed information on the ICM. The radial distribution of its thermodynamic properties (the pressure, temperature and entropy) indicate that the cluster has a highly disturbed core. We also computed the hydrostatic mass of the cluster, which is compatible with estimations from SZ and X-ray scaling relations. We conclude that the NIKA2 SZ large program can deliver quality information on the thermodynamics of the ICM even for one of its faintest clusters after a careful treatment of the contamination by point sources

    The NIKA2 large field-of-view millimeter continuum camera for the 30-m IRAM telescope

    Get PDF
    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. CMB - cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-ofview of 6.5 arcminutes in diameter, and configurable to map the linear polarisation at 260 GHz. Aims. First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors (KID), and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an ad-hoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institut of Millimetric Radio Astronomy) telescope at Pico Veleta, near Granada (Spain). Methods. We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results. NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In particular, NIKA2 exhibits full width at half maximum (FWHM) angular resolutions of around 11 and 17.5 arc-seconds at respectively 260 and 150 GHz. The noise equivalent flux densities (NEFD) are, at these two respective frequencies, 33±2 and 8±1 mJy ·s 1/2. A first successful science verification run was achieved in April 2017. The instrument is currently offered to the astronomy community and will remain available for at least the following ten years

    The XXL Survey: XLIV. Sunyaev-Zel’dovich mapping of a low-mass cluster at z ∌ 1: a multi-wavelength approach

    Get PDF
    High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∌ 2 × 1014 M⊙) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∌r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∌ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid

    The XXL Survey: XLIV. Sunyaev-Zel'dovich mapping of a low-mass cluster at z ∌1: A multi-wavelength approach

    Get PDF
    High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel'dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∌ 2 × 1014 M·) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∌r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∌ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid
    • 

    corecore