3 research outputs found

    Optimization of the Navigated TMS Mapping Algorithm for Accurate Estimation of Cortical Muscle Representation Characteristics

    No full text
    Navigated transcranial magnetic stimulation (nTMS) mapping of cortical muscle representations allows noninvasive assessment of the state of a healthy or diseased motor system, and monitoring changes over time. These applications are hampered by the heterogeneity of existing mapping algorithms and the lack of detailed information about their accuracy. We aimed to find an optimal motor evoked potential (MEP) sampling scheme in the grid-based mapping algorithm in terms of the accuracy of muscle representation parameters. The abductor pollicis brevis (APB) muscles of eight healthy subjects were mapped three times on consecutive days using a seven-by-seven grid with ten stimuli per cell. The effect of the MEP variability on the parameter accuracy was assessed using bootstrapping. The accuracy of representation parameters increased with the number of stimuli without saturation up to at least ten stimuli per cell. The detailed sampling showed that the between-session representation area changes in the absence of interventions were significantly larger than the within-session fluctuations and thus could not be explained solely by the trial-to-trial variability of MEPs. The results demonstrate that the number of stimuli has no universally optimal value and must be chosen by balancing the accuracy requirements with the mapping time constraints in a given problem

    Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving

    No full text
    Insight is one of the most mysterious problem-solving phenomena involving the sudden emergence of a solution, often preceded by long unproductive attempts to find it. This seemingly unexplainable generation of the answer, together with the role attributed to insight in the advancement of science, technology and culture, stimulate active research interest in discovering its neuronal underpinnings. The present study employs functional Magnetic resonance imaging (fMRI) to probe and compare the brain activations occurring in the course of solving anagrams by insight or analytically, as judged by the subjects. A number of regions were activated in both strategies, including the left premotor cortex, left claustrum, and bilateral clusters in the precuneus and middle temporal gyrus. The activated areas span the majority of the clusters reported in a recent meta-analysis of insight-related fMRI studies. At the same time, the activation patterns were very similar between the insight and analytical solutions, with the only difference in the right sensorimotor region probably explainable by subject motion related to the study design. Additionally, we applied resting-state fMRI to study functional connectivity patterns correlated with the individual frequency of insight anagram solutions. Significant correlations were found for the seed-based connectivity of areas in the left premotor cortex, left claustrum, and left frontal eye field. The results stress the need for optimizing insight paradigms with respect to the accuracy and reliability of the subjective insight/analytical solution classification. Furthermore, the short-lived nature of the insight phenomenon makes it difficult to capture the associated neural events with the current experimental techniques and motivates complementing such studies by the investigation of the structural and functional brain features related to the individual differences in the frequency of insight-based decisions
    corecore